Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T06:41:36.288Z Has data issue: false hasContentIssue false

Graphene – A Promising Electrode Material in Liquid Cell Electrochemistry

Published online by Cambridge University Press:  30 July 2021

Shu Fen Tan
Affiliation:
MIT, Massachusetts, United States
Kate Reidy
Affiliation:
Massachusetts Institute of Technology (MIT), United States
Serin Lee
Affiliation:
MIT, Cambridge, Massachusetts, United States
Julian Klein
Affiliation:
MIT, United States
Nicholas Schneider
Affiliation:
Renata Global, United States
Hae Yeon Lee
Affiliation:
Massachusetts Institute of Technology, United States
Frances Ross
Affiliation:
MIT, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
New Frontiers in In-Situ Electron Microscopy in Liquids and Gases (L&G EM FIG Sponsored)
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Hynek, D. J.; Pondick, J. V.; Cha, J. J., The development of 2D materials for electrochemical energy applications: A mechanistic approach. APL Materials 2019, 7 (3), 030902.Google Scholar
Jo, G.; Choe, M.; Lee, S.; Park, W.; Kahng, Y. H.; Lee, T., The application of graphene as electrodes in electrical and optical devices. Nanotechnology 2012, 23 (11), 112001.CrossRefGoogle ScholarPubMed
Ke, Q.; Wang, J., Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics 2016, 2 (1), 37-54.CrossRefGoogle Scholar
Pang, S.; Hernandez, Y.; Feng, X.; Müllen, K., Graphene as Transparent Electrode Material for Organic Electronics. Adv. Mater. 2011, 23 (25), 2779-2795.CrossRefGoogle ScholarPubMed
Wang, H.; Hu, Y. H., Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 2012, 5 (8), 8182-8188.CrossRefGoogle Scholar
Hodnik, N.; Dehm, G.; Mayrhofer, K. J. J., Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research. Acc. Chem. Res. 2016, 49 (9), 2015-2022.Google ScholarPubMed
Schneider, N. M.; Park, J. H.; Grogan, J. M.; Steingart, D. A.; Bau, H. H.; Ross, F. M., Nanoscale evolution of interface morphology during electrodeposition. Nature Communications 2017, 8 (1), 2174.CrossRefGoogle ScholarPubMed
Williamson, M. J.; Tromp, R. M.; Vereecken, P. M.; Hull, R.; Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2003, 2 (8), 532-536.CrossRefGoogle ScholarPubMed
Radisic, A.; Vereecken, P. M.; Hannon, J. B.; Searson, P. C.; Ross, F. M., Quantifying Electrochemical Nucleation and Growth of Nanoscale Clusters Using Real-Time Kinetic Data. Nano Lett. 2006, 6 (2), 238-242.CrossRefGoogle ScholarPubMed
de Jonge, N.; Houben, L.; Dunin-Borkowski, R. E.; Ross, F. M., Resolution and aberration correction in liquid cell transmission electron microscopy. Nature Reviews Materials 2019, 4 (1), 61-78.CrossRefGoogle Scholar
This work made use of facilities and instrumentation supported by NSF through the Massachusetts Institute of Technology Materials Research Science and Engineering Center under Grant DMR-1419807.Google Scholar