Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T15:04:02.189Z Has data issue: false hasContentIssue false

Fractal and Image Analysis of the Microvasculature in Normal Intestinal Submucosa and Intestinal Polyps in ApcMin/+ Mice

Published online by Cambridge University Press:  24 December 2009

John W. Fuseler
Affiliation:
Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
Adam Bedenbaugh
Affiliation:
Department of Medicine, Division of Molecular Cardiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA
Krishna Yekkala
Affiliation:
Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
Troy A. Baudino*
Affiliation:
Department of Medicine, Division of Molecular Cardiology, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Tumors are supported by the development of a unique vascular bed. We used fractal dimension (Db) and image analysis to quantify differences in the complexity of the vasculature in normal intestinal submucosa and intestinal polyps. ApcMin/+ mice and wild-type mice were perfused with a curable latex compound, intestines sectioned, and images collected via confocal microscopy. The images were analyzed and area (A), perimeter (P), and integrated optical density (IOD) of the normal and tumor vascular beds were measured. The Db, a quantitative descriptor of morphological complexity, was significantly greater for the polyp vasculature from ApcMin/+ mice than controls. This indicates that the polyp microvasculature is more chaotic than that of the controls, while the IOD and average vascular density values displayed no differences. This suggests the mass of blood volume is equivalent in normal and polyp microvasculature. The lower vascular area-perimeter ratios expressed by the polyp microvasculature suggest it is composed of smaller, more tortuous vessels. These data demonstrate that fractal analysis is applicable for providing a quantitative description of vascular complexity associated with angiogenesis occurring in normal or diseased tissue. Application of Db, IOD, and average density provides a clearer quantification of the complex morphology associated with tissue microvasculature.

Type
Biological Imaging: Techniques Development and Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham, R. & Shaw, C. (1992). Dynamics, The Geometry of Behavior, 2nd Ed.Reading, MA: Addison-Wesley.Google Scholar
Baish, J.W., Gazit, Y., Berk, D.A., Nozue, M., Baxter, L.T. & Jain, R.K. (1996). Role of tumor vascular architecture in nutrient and drug delivery: An invasion percolation-based network model. Microvasc Res 51, 327346.CrossRefGoogle ScholarPubMed
Baish, J.W. & Jain, R.K. (2000). Fractals and cancer. Cancer Res 60, 36833688.Google ScholarPubMed
Barclay, K.D., Klassen, G.A. & Young, C. (2000). A method for detecting chaos in canine myocardial microcirculatory red cell flux. Microcirculation 7, 335346.Google Scholar
Cross, S.S. (1997). Fractals in pathology. J Pathol 182, 18.3.0.CO;2-B>CrossRefGoogle Scholar
De Felice, C., Latini, G., Bianciardi, G., Parrini, S., Fadda, G.M., Marini, M., Laurini, R.N. & Kopotic, R.J. (2003). Abnormal vascular network complexity: A new phenotypic marker in hereditary nonpolyposis colorectal cancer syndrome. Gut 52, 17641767.Google Scholar
Di Ieva, A., Grizzi, F., Ceva-Grimaldi, G., Russo, C., Gaetani, P., Aimar, E., Levi, D., Pisano, P., Tancioni, F., Nicoloa, G., Tschabitscher, M., Dioguardi, N. & Baena, R.R. (2007). Fractal dimension as a quantitator of the microvasculature of normal and adenomatous pituitary tissue. J Anat 211, 673680.CrossRefGoogle ScholarPubMed
Dokoumetzidis, A., Iliadis, A. & Macheras, P. (2001). Nonlinear dynamics and chaos theory: Concepts and applications relevant to pharmacodynamics. Pharm Res 18, 415426.Google Scholar
Fernandez, E. & Jelinek, H.F. (2001). Use of fractal theory in neuroscience: Methods, advantages, and potential problems. Methods 24, 309321.Google Scholar
Fuseler, J.W., Merrill, D.M., Rogers, J.A., Grisham, M.B. & Wolf, R.E. (2006). Analysis and quantitation of NF-kappa β nuclear translocation in tumor necrosis factor alpha (TNF-alpha) activated vascular endothelial cells. Microsc Microanal 12, 269276.Google Scholar
Fuseler, J.W., Millette, C.F., Davis, J.M. & Carver, W. (2007). Fractal and image analysis of morphological changes in the actin cytoskeleton of neonatal cardiac fibroblasts in response to mechanical stretch. Microsc Microanal 13, 133143.Google Scholar
Gazit, Y., Baish, J.W., Safabakhsh, N., Leunig, M., Baxter, L.T. & Jain, R.K. (1997). Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation 4, 395402.Google Scholar
Gazit, Y., Berk, D.A., Leunig, M., Baxter, L.T. & Jain, R.K. (1995). Scale-invariant behavior and vascular network formation in normal and tumor tissue. Phys Rev Lett 75, 24282431.Google Scholar
Glenny, R.W., Robertson, H.T., Yamashiro, S. & Bassingthwaighte, J.B. (1991). Applications of fractal analysis to physiology. J Appl Physiol 70, 23512367.CrossRefGoogle ScholarPubMed
Grizzi, F., Russo, C., Colombo, P., Franceschini, B., Frezza, E.E., Cobos, E. & Chiriva-Internati, M. (2005). Quantitative evaluation and modeling of two-dimensional neovascular network complexity: The surface fractal dimension. BMC Cancer 5, 1423.Google Scholar
Guiot, C., Delsanto, P.P., Carpinteri, A., Pugno, N., Mansury, Y. & Deisboeck, T.S. (2006). The dynamic evolution of the power exponent in a universal growth model of tumors. J Theor Biol 240, 459463.Google Scholar
He, T.C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da Costa, L.T., Morin, P.J., Vogelstein, B. & Kinzler, K.W. (1999). Identification of c-myc as a target of the APC pathway. Science 281, 15091512.Google Scholar
Heymans, O., Blacher, S., Bouers, F. & Pierard, G.E. (1999). Fractal quantifications of the miscrovasculature heterogeneity in cutaneous melanoma. Dermatology 198, 212217.CrossRefGoogle ScholarPubMed
Karshafian, R., Burns, P.N. & Henkelman, M.R. (2003). Transit time kinetics in ordered and disordered vascular trees. Phys Med Biol 48, 32253237.CrossRefGoogle ScholarPubMed
Kikuchi, A., Kozuma, S., Sakamaki, K., Saito, M., Marumo, G., Yasugi, T. & Taketani, Y. (2002). Fractal tumor growth of ovarian cancer: Sonographic evaluation. Gynecol Oncol 87, 295302.CrossRefGoogle ScholarPubMed
Kinzler, K.W. & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell 87, 159170.Google Scholar
Korinek, V., Barker, N., Morin, P.J., van Wichen, D., de Weger, R., Kinzler, K.W., Vogelstein, B. & Clevers, H. (1997). Constitutive transcriptional activation by a βcatenin-Tcf complex in APC−/– colon carcinoma. Science 275, 17841787.CrossRefGoogle Scholar
Mandelbrot, B.B. (1982). The Fractal Geometry of Nature, pp. 1419. New York: W.H. Freeman and Company.Google Scholar
Mandelbrot, B.B., Passoja, D.E. & Paully, A.J. (1984). Fractal character of fractures surfaces of metals. Nature 308, 721724.CrossRefGoogle Scholar
Molenaar, M., van de Wetering, M., Oosterwegel, M., Peterson-Maduro, J., Godsave, S., Korinek, V., Roose, J., Destree, O. & Clevers, H. (1996). XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391399.Google Scholar
Morin, P.J., Sparks, A.B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B. & Kinzler, K.W. (1997). Activation of β-catenin-Tcf signaling in colon cancers by mutations in β-catenin or APC. Science 275, 17871790.Google Scholar
Moser, A.R., Pitot, H.C. & Dove, W.F. (1990). A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322324.Google Scholar
Nezadal, M., Zemeskal, O. & Buchnicek, M. (2001). The Box-Counting: Critical Study, 4th Conference on Prediction, Synergetic and More. The Faculty of Management, Institute of Information Technologies, Faculty of Technology, Tomas Bata University in Zlin, October 25–26, p. 18. HarFA software available at http://www.fch.vutbr.cz/lectures/imagesci.Google Scholar
Orel, V., Kozarenko, T., Galachin, K., Romanov, A. & Morozoff, A. (2007). Nonlinear analysis of digital images and Doppler measurements for trophoblastic tumor. Nonlinear Dynamics Psychol Life Sci 11, 309331.Google Scholar
Rogers, J.A. & Fuseler, J.W. (2007). Regulation of NF-kappaB activation and nuclear translocation by exogenous nitric oxide (NO) donors in TNF-alpha activated vascular endothelial cells. Nitric Oxide 16, 379391.Google Scholar
Sabo, E., Boltenko, A., Sova, Y., Stein, A., Kleinhaus, S. & Resnick, M.B. (2001). Microscopic analysis and significance of vascular architectural complexity in renal cell carcinoma. Clin Cancer Res 7, 533537.Google Scholar
Shoemaker, A.R., Gould, K.A., Luongo, C., Moser, A.R. & Dove, W.F. (1997). Studies of neoplasia in the Min mouse. Biochim Biophys Acta 1332, F25–48.Google Scholar
Smith, K.J., Johnson, K.A., Bryan, T.M., Hill, D.E., Markowitz, S., Willson, J.K., Paraskeva, C., Petersen, G.M., Hamilton, S.R., Vogelstein, B. & Kinzler, K.W. (1993). The APC gene product in normal and tumor cells. Proc Natl Acad Sci USA 90, 28462850.CrossRefGoogle ScholarPubMed
Vico, P.G., Kyriacos, S., Heymans, O., Louryan, S. & Cartilier, L. (1998). Dynamic study of the extraembryonic vascular network of the chick embryo by fractal analysis. J Theor Biol 195, 525532.Google Scholar
Walter, R.J. Jr. & Berns, M.W. (1986). Digital image processing and analysis. In Video Microscopy, Inoue, S. (Ed.), pp. 327392. New York, London: Plenum Press.Google Scholar
Yambe, T., Nanka, S., Kobayashi, S., Tanaka, A., Owada, N., Yoshizawa, M., Abe, K., Tabayashi, K., Takeda, H., Nishihira, T. & Nitta, S. (1999). Detection of the cardiac function by fractal dimension analysis. Artif Organs 23, 751756.CrossRefGoogle ScholarPubMed
Yekkala, K. & Baudino, T.A. (2007). Inhibition of intestinal polyposis with reduced angiogenesis in Apc Min/+ mice due to decreases in c-Myc expression. Mol Cancer Res 5, 12961303.Google Scholar
Zhang, L., Liu, J.Z., Dean, D., Sahgal, V. & Yue, G.H. (2005). A three dimensional fractal analysis method for quantifying white matter structure in human brain. J Neurosci Methods 150, 242253.CrossRefGoogle ScholarPubMed