Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T19:58:44.707Z Has data issue: false hasContentIssue false

FIB Preparation of a NiO Wedge-Lamella and STEM X-Ray Microanalysis for the Determination of the Experimental k(O-Ni) Cliff-Lorimer Coefficient

Published online by Cambridge University Press:  03 January 2013

Aldo Armigliato*
Affiliation:
CNR-IMM Institute, Via P.Gobetti, 101 40129 Bologna, Italy
Stefano Frabboni
Affiliation:
Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via G. Campi 213/A, 41100 Modena (Italy) and CNR-Istituto di Nanoscienze-S3, via G. Campi 213/A, 41100 Modena, Italy CNR-Istituto di Nanoscienze-S3, via G. Campi 213/a, 41100 Modena, Italy
Gian Carlo Gazzadi
Affiliation:
CNR-Istituto di Nanoscienze-S3, via G. Campi 213/a, 41100 Modena, Italy
Rodolfo Rosa
Affiliation:
Dipartimento di Scienze Statistiche, Università di Bologna, Via Belle Arti, 40126 Bologna, Italy
*
*Corresponding author: E-mail: [email protected]
Get access

Abstract

A method for the fabrication of a wedge-shaped thin NiO lamella by focused ion beam is reported. The starting sample is an oxidized bulk single crystalline, ⟨100⟩ oriented, Ni commercial standard. The lamella is employed for the determination, by analytical electron microscopy at 200 kV of the experimental k(O-Ni) Cliff-Lorimer (G. Cliff & G.W. Lorimer, J Microsc103, 203–207, 1975) coefficient, according to the extrapolation method by Van Cappellen (E. Van Cappellen, Microsc Microstruct Microanal1, 1–22, 1990). The result thus obtained is compared to the theoretical k(O-Ni) values either implemented into the commercial software for X-ray microanalysis quantification of the scanning transmission electron microscopy/energy dispersive spectrometry equipment or calculated by the Monte Carlo method. Significant differences among the three values are found. This confirms that for a reliable quantification of binary alloys containing light elements, the choice of the Cliff-Lorimer coefficients is crucial and experimental values are recommended.

Type
Software, Techniques and Equipment Development
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, I.M., Bentley, J. & Carter, C.B. (1995). The secondary fluorescence correction for X-ray microanalysis in the analytical electron microscope. J Microsc 178, 226239.CrossRefGoogle Scholar
Armigliato, A. & Rosa, R. (2009). X-ray microanalysis combined with Monte Carlo simulation for the analysis of layered thin films: The case of carbon contamination. Microsc Microanal 15, 99105.CrossRefGoogle ScholarPubMed
Atkinson, A. (1985). Transport processes during the growth of oxide films at elevated temperature. Rev Mod Phys 57, 437470.CrossRefGoogle Scholar
Cliff, G. & Lorimer, G.W. (1975). The quantitative analysis of thin films. J Microsc 103, 203207.CrossRefGoogle Scholar
Egerton, R.F. & Cheng, S.C. (1994). Characterization of an analytical electron microscope with a NiO test specimen. Ultramicroscopy 55, 4354.CrossRefGoogle Scholar
Giannuzzi, L.A., Drown, J.L., Brown, S.R., Irwin, R.B. & Stevie, F.A. (1997). Focused ion beam milling and micromanipulation lift-out for site specific cross-section TEM specimen preparation. Mat Res Soc Proc 480, 19.CrossRefGoogle Scholar
Goldstein, J.I., Costley, J.L., Lorimer, G.W. & Reed, R.J.B. (1977). Quantitative X-ray analysis in the electron microscope. In Scanning Electron Microscopy 1977, Johari, O. (Ed.), Vol. 1, pp. 315324. Chicago, IL: IITRI.Google Scholar
Herchl, R., Kooi, N.N., Homma, T. & Smeltzer, W.W. (1972). Short-circuit diffusion in the growth of nickel oxide scales on nickel crystal faces. Oxid Met 4, 3549.CrossRefGoogle Scholar
Holzapfel, C., Soldera, F., Faundez, E.A. & Mücklich, F. (2007). Site-specific structural investigations of oxidized nickel samples modified by plasma erosion processes. J Microsc 227, 4250.CrossRefGoogle ScholarPubMed
Hutchinson, C.R., Hackenberg, R.E. & Shiflet, G.J. (2003). A comparison of EDS microanalysis in FIB-prepared and electropolished TEM thin foils. Ultramicroscopy 94, 3748.CrossRefGoogle ScholarPubMed
Nockolds, C.E., Nasir, M.J., Cliff, G. & Lorimer, G.W. (1980). X-ray fluorescence correction in thin foil analysis and direct methods for foil thickness measurement. Electron Microscopy and Analysis 1979: Proc. EMAG 79, University of Sussex, Brighton, 1979, Mulvey, T. (Ed.), Inst. Physics Conf. Series 52, pp. 417420. Bristol, UK: Institute of Physics.Google Scholar
Rosa, R. & Armigliato, A. (1989). Monte Carlo simulation of thin-film X-ray microanalysis at high energies. X-Ray Spectrom 18, 1923.CrossRefGoogle Scholar
Van Cappellen, E. (1990). The parameterless correction method in X-ray microanalysis. Microsc Microstruct Microanal 1, 122.CrossRefGoogle Scholar
Westwood, A.D., Michael, J.R. & Notis, M.R. (1992). Experimental determination of light-element k-factors using the extrapolation technique: Oxygen segregation in aluminium nitride. J Microsc 167, 287302.CrossRefGoogle Scholar
Williams, D.B. & Carter, C.B. (2009). Quantitative X-ray analysis. In Transmission Electron Microscopy, 2nd ed., part 4, chap. 35. New York: Springer.CrossRefGoogle Scholar
Zaluzec, N.J., Maher, D.M. & Mochel, P.E. (1981). Effect of detector geometry on AEM-based X-ray microanalysis: I. Theoretical. In Analytical Electron Microscopy-1981, Geiss, R.H. (Ed.), pp. 2528. San Francisco, CA: San Francisco Press.Google Scholar