Published online by Cambridge University Press: 02 July 2020
Interest in electron beam x-ray microanalysis with low incident beam energies, defined arbitrarily as 5 keV and below, has been greatly stimulated in recent years by the development of the high performance field emission gun scanning electron microscope (FEG-SEM), which can produce a nanometer-scale probe with sufficient current to operate with both energy dispersive (EDS) and wavelength dispersive (WDS) spectrometers. Microanalysis in this regime requires the analyst to confront new spectrometry problems that are not typically encountered, or that can be safely ignored, when operating with conventional beam energies, 10 keV or greater. With low energy operation, the choice of atomic shells that can be accessed is restricted, forcing the analyst to make use of shells that have low fluorescence yields for intermediate and high atomic number elements, and possibly strong chemical effects, which are evident with high resolution x-ray spectrometry.