Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T08:30:26.107Z Has data issue: false hasContentIssue false

Extended Depth of Field for High-Resolution Scanning Transmission Electron Microscopy

Published online by Cambridge University Press:  02 December 2010

Robert Hovden*
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
Huolin L. Xin
Affiliation:
Department of Physics, Cornell University, Ithaca, NY 14853, USA
David A. Muller
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Aberration-corrected scanning transmission electron microscopes (STEMs) provide sub-Angstrom lateral resolution; however, the large convergence angle greatly reduces the depth of field. For microscopes with a small depth of field, information outside of the focal plane quickly becomes blurred and less defined. It may not be possible to image some samples entirely in focus. Extended depth-of-field techniques, however, allow a single image, with all areas in focus, to be extracted from a series of images focused at a range of depths. In recent years, a variety of algorithmic approaches have been employed for bright-field optical microscopy. Here, we demonstrate that some established optical microscopy methods can also be applied to extend the ∼6 nm depth of focus of a 100 kV 5th-order aberration-corrected STEM (αmax = 33 mrad) to image Pt-Co nanoparticles on a thick vulcanized carbon support. These techniques allow us to automatically obtain a single image with all the particles in focus as well as a complimentary topography map.

Type
TEM and STEM Materials Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguet, F., Van De Ville, D. & Unser, M. (2008). Model-based 2.5-D deconvolution for extended depth of field in brightfield microscopy. IEEE Trans Image Processing 17(7), 11441153.CrossRefGoogle ScholarPubMed
Batson, P.E. (2006). Characterizing probe performance in the aberration corrected STEM. Ultramicroscopy 106(11-12), 11041114.CrossRefGoogle ScholarPubMed
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418(6898), 617620.CrossRefGoogle ScholarPubMed
Behan, G., Cosgriff, E.C., Kirkland, A.I. & Nellist, P.D. (2009). Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos Trans R Soc A-Math Phys Eng Sci 367(1903), 38253844.CrossRefGoogle ScholarPubMed
Born, M. & Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burt, P., Hanna, K. & Kolczynski, R. (1993). Enhanced image capture through fusion. In Proceedings of the Workshop on Augmented Visual Display (AVID) Research, pp. 207224. Moffett Field, CA: NASA, Ames Research Center.Google Scholar
Dey, N., Blanc-Feraud, L., Zimmer, C., Roux, P., Kam, Z., Olivo-Marin, J.C. & Zerubia, J. (2006). Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc Res Tech 69(4), 260266.CrossRefGoogle ScholarPubMed
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102, 096101.CrossRefGoogle ScholarPubMed
Forster, B., Van de Ville, D., Berent, J., Sage, D. & Unser, M. (2004). Complex wavelets for extended depth-of-field: A new method for the fusion of multichannel microscopy images. Microsc Res Tech 65(1-2), 3342.CrossRefGoogle ScholarPubMed
Hyun, J.K., Ercius, P. & Muller, D.A. (2008). Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy 109(1), 17.CrossRefGoogle ScholarPubMed
Intaraprasonk, V., Xin, H.L. & Muller, D.A. (2008). Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108(11), 14541466.CrossRefGoogle ScholarPubMed
Lucy, L.B. (1974). Iterative technique for rectification of observed distributions. Astron J 79(6), 745754.CrossRefGoogle Scholar
Mallat, S. (1999). A Wavelet Tour of Signal Processing. New York: Academic.Google Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. & Pennycook, S.J. (2004). Direct sub-Ångstrom imaging of a crystal lattice. Science 305, 1741.CrossRefGoogle ScholarPubMed
Richards, Wh. (1972). Bayesian-based iterative method of image restoration. J Opt Soc Am 62(1), 5559.CrossRefGoogle Scholar
Sobel, I. & Feldman, G. (1968). A 3 × 3 isotropic gradient operator for image processing. Presented at a talk at the Stanford Artificial Project in 1968, unpublished but often cited, orig. Duda, R. & Hart, P. (1973). Pattern Classification and Scene Analysis, pp. 271–272. New York: John Wiley and Sons.Google Scholar
Unser, M. & Aldroubi, A. (1996). A review of wavelets in biomedical applications. Proc IEEE 84(4), 626638.CrossRefGoogle Scholar
Valdecasas, A.G., Marshall, D., Becerra, J.M. & Terrero, J.J. (2001). On the extended depth of focus algorithms for bright field microscopy. Micron 32(6), 559569.CrossRefGoogle ScholarPubMed
Van den Broek, W., Van Aert, S. & Van Dyck, D. (2010). A model based reconstruction technique for depth sectioning with scanning transmission electron microscopy. Ultramicroscopy 110(5), 548554.CrossRefGoogle Scholar
Xin, H.L., Intaraprasonk, V. & Muller, D.A. (2008). Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 92(1), 013125-1013125-3.CrossRefGoogle Scholar
Xin, H.L. & Muller, D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Elec Microsc 58(3), 157165.CrossRefGoogle ScholarPubMed
Xin, H.L. & Muller, D.A. (2010). Three-dimensional imaging in aberration-corrected electron microscopes. Microsc Microanal 16(4), 445455.CrossRefGoogle ScholarPubMed