Published online by Cambridge University Press: 10 January 2013
Dermal bone is an important component of the teleost fins, and its ability to regenerate after fin amputation appears to be unlimited. The organic bone matrix contain type I collagen fibers, proteoglycans enriched in chondroitin sulfate, and noncollagenous matrix protein such as osteocalcin, osteopontin, and osteonectin. These molecules are synthesized by fin osteoblasts. Inorganic components chiefly consist of calcium and phosphate that form crystals of hydroxyapatite. Fin rays are described as models to study ossification. Due to this, the identification of the components involved in the synthesis of the organic and inorganic components of lepidotrichial bone are of great interest for the analysis of skeletal disorders in fish ossification. The present study investigates expression of alkaline phosphatase, osteopontin, osteocalcin, and chondroitin sulfate during pectoral fin regeneration in Carassius auratus gibelio. Alkaline phosphatase reaction has been found in the epidermis covering the wound, proximal blastema, near the cells that surround newly-formed lepidotrichia matrix and the tips of regenerating fin rays. Osteopontin has been observed throughout the regeneration blastema but excluded from the scleroblasts lining the inner side of the lepidotrichia. Osteocalcin and chondroitin sulfate expression coincides with the onset of mineralization of lepidotrichial matrix, suggesting its involvement in bone mineralization.