Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T23:43:40.302Z Has data issue: false hasContentIssue false

Evaluation of Electrospray as a Sample Preparation Tool for Electron Microscopic Investigations: Toward Quantitative Evaluation of Nanoparticles

Published online by Cambridge University Press:  09 January 2017

Johannes Mielke
Affiliation:
Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany
Pavla Dohányosová
Affiliation:
RAMEM Ltd., 28027 Madrid, Spain
Philipp Müller
Affiliation:
Material Physics Research, BASF SE, 67056 Ludwigshafen, Germany
Silvia López-Vidal
Affiliation:
RAMEM Ltd., 28027 Madrid, Spain
Vasile-Dan Hodoroaba*
Affiliation:
Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany
*
*Corresponding author. [email protected]
Get access

Abstract

The potential of electrospray deposition, for the controlled preparation of particles for imaging in electron microscopes, is evaluated on various materials: from mono-modal suspensions of spherical particles to multimodal suspensions and to real-world industrial materials. It is shown that agglomeration is reduced substantially on the sample carrier, compared with conventional sample preparation techniques. For the first time, it is possible to assess the number concentration of a tri-modal polystyrene suspension by electron microscopy, due to the high deposition efficiency of the electrospray. We discovered that some suspension stabilizing surfactants form artifact particles during electrospraying. These can be avoided by optimizing the sprayed suspension.

Type
Materials Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babick, F., Mielke, J., Wohlleben, W., Weigel, S. & Hodoroaba, V.-D. (2016). How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. J Nanopart Res 18(6), 140.CrossRefGoogle ScholarPubMed
Buhr, E., Senftleben, N., Klein, T., Bergmann, D., Gnieser, D., Frase, C.G. & Bosse, H. (2009). Characterization of nanoparticles by scanning electron microscopy in transmission mode. Meas Sci Technol 20(8), 084025 (9pp).Google Scholar
Gaskell, S.J. (1997). Electrospray: Principles and practice. J Mass Spectrom 32(7), 677688.3.0.CO;2-G>CrossRefGoogle Scholar
Gomez, A. & Deng, W. (2011). Fundamentals of cone-jet electrospray. In Aerosol Measurement: Principles, Techniques, and Applications, Kulkarni, P., Baron, P.A. & Willeke, K. (Eds), pp. 435–448, 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Hodoroaba, V.-D., Motzkus, C., Macé, T. & Vaslin-Reimann, S. (2014). Performance of high-resolution SEM/XEDS systems equipped with transmission mode (TSEM) for imaging and measurement of size and size distribution of spherical nanoparticles. Microsc Microanal 20, 602612.CrossRefGoogle Scholar
Jaworek, A. (2006). Electrospray droplet sources for thin film deposition. J Mater Sci 42(1), 266297.CrossRefGoogle Scholar
Jaworek, A. & Sobczyk, A.T. (2008). Electrospraying route to nanotechnology: An overview. J Electrostat 66(3-4), 197219.CrossRefGoogle Scholar
Kebarle, P. & Tang, L. (1993). From ions in solution to ions in the gas phase—the mechanism of electrospray mass spectrometry. Anal Chem 65(22), 972A986A.Google Scholar
Kumagai, K. & Kurokawa, A. (2015). Specimen preparation method for size distribution measurements of nano-materials by scanning electron microscopy—fixing of nano-particles on a substrate with adhesive coating. Microsc Microanal 21(S3), 17091710.Google Scholar
NanoDefine. (2016). Webpage of the EU FP7 project Development of methods and standards supporting the implementation of the Commission recommendation for a definition of nanomaterial. Available at http://www.nanodefine.eu (Retrieved December 15, 2016).Google Scholar
O’Sullivan, M.C., Sprafke, J.K., Kondratuk, D.V., Rinfray, C., Claridge, T.D.W., Saywell, A., Blunt, M.O., O’Shea, J.N., Beton, P.H., Malfois, M. & Anderson, H.L. (2011). Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469(7328), 7275.Google ScholarPubMed
Satterley, C.J., Perdigao, L.M.A., Saywell, A., Magnano, G., Rienzo, A., Mayor, L.C., Dhanak, V.R., Beton, P.H. & O’Shea, J.N. (2007). Electrospray deposition of fullerenes in ultra-high vacuum: In situ scanning tunneling microscopy and photoemission spectroscopy. Nanotechnology 18(45), 455304. (5pp).CrossRefGoogle Scholar
Saywell, A., Sprafke, J.K., Esdaile, L.J., Britton, A.J., Rienzo, A., Anderson, H.L., O’Shea, J.N. & Beton, P.H. (2010). Conformation and packing of porphyrin polymer chains deposited using electrospray on a gold surface. Angew Chem 122, 91369139.Google Scholar
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671675.Google Scholar
Tannenberg, R., Eickhoff, H. & Weigel, W. (2016). Imaging nanoparticle arrays. Imaging Microsc March, 3335. Available at http://www.imaging-git.com/applications/imaging-nanoparticle-arrays (Retrieved December 15, 2016).Google Scholar
Taylor, G. (1964). Disintegration of water drops in an electric field. Proc R Soc Lond A. 280(1382), 383–397.Google Scholar
Supplementary material: File

Mielke supplementary material

Table S1

Download Mielke supplementary material(File)
File 29.6 KB