No CrossRef data available.
Published online by Cambridge University Press: 02 July 2020
The importance of the extracellular calcium-sensing receptor (CaR) in the stringent control of extracellular Ca2+ concentration is well established. However, the presence of CaR in tissues not directly involved in regulating mineral ion homeostasis suggests a role for CaR in local regulation of cellular functions. Although extracellular Ca2+ regulates the differentiation of keratinocytes, the role of CaR in the epidermis is not established. In this work using knockout mice lacking full length CaR, we sought to determine the role of CaR in epidermal differentiation.
Dorsal skin of Casr−/− knockout mice lacking full length CaR, and Casr+/+ (wild type) control mice, aged 4 to 7 days after birth was fixed in 4% formaldehyde in PBS, and in 2.5% glutaraldehyde and 2% formaldehyde in 0.1 M cacodylate buffer. The samples were embedded in paraffin (for immunohistochemistry and for in situ hybridization) or in Spurr’s or LR White resins. Digoxigenin labeled antisense and sense RNA probes for loricrin and filaggrin were used for in situ hybridization.