Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T18:46:14.305Z Has data issue: false hasContentIssue false

Enhanced Morphological and Thermal Stabilities of Nickel Germanide with an Ultrathin Tantalum Layer Studied by Ex Situ and In Situ Transmission Electron Microscopy

Published online by Cambridge University Press:  06 August 2013

Jae-Wook Lee
Affiliation:
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746, SouthKorea
Hyung-Kyu Kim
Affiliation:
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746, SouthKorea
Jee-Hwan Bae
Affiliation:
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746, SouthKorea
Min-Ho Park
Affiliation:
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746, SouthKorea
Hyoungsub Kim
Affiliation:
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746, SouthKorea
Jiho Ryu
Affiliation:
Department of Automobile Development, Ajou Motor College, Boryeong 355-769, SouthKorea
Cheol-Woong Yang*
Affiliation:
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746, SouthKorea
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

The formation and morphological evolution of germanides formed in a ternary Ni/Ta-interlayer/Ge system were examined by ex situ and in situ annealing experiments. The Ni germanide film formed in the Ni/Ta-interlayer/Ge system maintained continuity up to 550°C, whereas agglomeration of the Ni germanide occurred in the Ni/Ge system without Ta-interlayer. Through microstructural and chemical analysis of the Ni/Ta-interlayer/Ge system during and after in situ annealing in a transmission electron microscope, it was confirmed that the Ta atoms remained uniformly on the top of the newly formed Ni germanide layer during the diffusion reaction. Consequently, the agglomeration of the Ni germanide film was retarded and the thermal stability was improved by the Ta incorporation.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashburn, S.P., Öztürk, M.C., Wortman, J.J., Harris, G., Honeycutt, J. & Maher, D.M. (1992). Formation of titanium and cobalt germanides on Si (100) using rapid thermal processing. J Electron Mater 21, 8186.10.1007/BF02670924Google Scholar
Bai, W.P., Lu, N., Ritenour, A., Lee, M.L., Antoniadis, D.A. & Kwong, D.L. (2006). Ge n-MOSFETs on lightly doped substrates with high-k dielectric and TaN gate. IEEE Electron Device Lett 27, 175178.10.1109/LED.2006.870242Google Scholar
Gusev, E.P., Shang, H., Copel, M., Gribelyuk, M., D'emic, C., Kozlowski, P. & Zabel, T. (2004). Microstructure and thermal stability of HfO2 gate dielectric deposited on Ge(100). Appl Phys Lett 85, 23342336.10.1063/1.1794849Google Scholar
Hsu, S.L., Chien, C.H., Yang, M.J., Huang, R.H., Leu, C.C., Shen, S.W. & Yang, T.H. (2005). Study of thermal stability of nickel monogermanide on single- and polycrystalline germanium substrates. Appl Phys Lett 86, 251906.10.1063/1.1953880Google Scholar
Lee, J.W., Bae, J.H., Park, M.H., Kang, H.B., Kim, H. & Yang, C.W. (2008). Microstructural evolution of nickel-germanide in the Ni1-xTax/Ge systems during in situ annealing. J Vac Sci Technol A 26, 688691.Google Scholar
Lee, M.L., Leitz, C.W., Cheng, Z., Pitera, A.J., Currie, M.T., Taraschi, G., Fitzgerald, E.A. & Antoniadis, D.A. (2001). Strained Ge channel p-type metal-oxide-semiconductor field-effect transistors grown on Si1-xGex/Si virtual substrates. Appl Phys Lett 79, 33443346.Google Scholar
Liew, S.L., Lee, R.T.P., Lee, K.Y., Balakrisnan, B., Chow, S.Y., Lai, M.Y. & Chi, D.Z. (2006). Enhanced morphological stability of NiGe films formed using Ni(Zr) alloy. Thin Solid Films 504, 104107.Google Scholar
Martin, S.C., Hitt, L.M. & Rosenberg, J.J. (1989). P-channel germanium MOSFET's with high channel mobility. IEEE Electron Device Lett 10, 325326.10.1109/55.29667Google Scholar
Oh, J., Majhi, P., Kang, C.Y., Yang, J.W., Tseng, H.H. & Jammy, R. (2007). Thermal stability of nanoscale Ge metal-oxide-semiconductor capacitors with ZrO2 high-k gate dielectrics on Ge epitaxial layers. Appl Phys Lett 90, 202102.Google Scholar
Park, K., An, C.H., Lee, M.S., Yang, C.W., Lee, H.J. & Kim, H. (2009). Microstructural evolution and electrical characteristics of Co-germanide contacts on Ge. J Electrochem Soc 156, H229H232.Google Scholar
Park, K., Lee, B.H., Lee, D., Ko, D.H., Kwak, K.H., Yang, C.W. & Kim, H. (2007). A study on the thermal stabilities of the NiGe and Ni1-xTaxGe systems. J Electrochem Soc 154, H557H560.10.1149/1.2732164Google Scholar
Patterson, J.K., Park, B.J., Ritley, K., Xiao, H.Z., Allen, L.H. & Rockett, A. (1994). Kinetics of Ni/a-Ge bilayer reactions. Thin Solid Films 253, 456461.10.1016/0040-6090(94)90366-2Google Scholar
Saraswat, K., Chui, C.O., Krishnamohan, T., Kim, D., Nayfeh, A. & Pethe, A. (2006). High performance germanium MOSFETs. Mat Sci Eng B 135, 242249.Google Scholar
Shang, H., Okorn-Schimdt, H., Ott, J., Kozlowski, P., Steen, S., Jones, E.C., Wong, H.S.P. & Hanesch, W. (2003). Electrical characterization of germanium p-channel MOSFETs. IEEE Electron Device Lett 24, 242244.Google Scholar
Spann, J.Y., Anderson, R.A., Thornton, T.J., Harris, G., Thomas, S.G. & Tracy, C. (2005). Characterization of nickel germanide thin films for use as contacts to p-channel germanium MOSFETs. IEEE Electron Device Lett 26, 151153.Google Scholar
Zhang, Q., Wu, N., Osipowicz, T., Bera, L.K. & Zhu, C. (2005). Formation and thermal stability of nickel germanide on germanium substrate. Jpn J Appl Phys 44, L1389L1391.Google Scholar
Zhang, Y.Y., Oh, J., Li, S.G., Jung, S.Y., Park, K.Y., Shin, H.S., Lee, G.W., Wang, J.S., Majhi, P., Tseng, H.H., Jammy, R., Bae, T.S. & Lee, H.D. (2009). Ni germanide utilizing ytterbium interlayer for high-performance Ge MOSFETs. Electrochem Solid-State Lett 12, H18H20.10.1149/1.3006319Google Scholar
Zhu, S., Yu, M.B., Lo, G.Q. & Kwong, D.L. (2007). Enhanced thermal stability of nickel germanide on thin epitaxial germanium by adding an ultrathin titanium layer. Appl Phys Lett 91, 051905.Google Scholar