Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T05:07:29.188Z Has data issue: false hasContentIssue false

Electron-Beam-Induced Growth of TiO2 Nanostructures

Published online by Cambridge University Press:  01 February 2011

See Wee Chee*
Affiliation:
LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, AZ 85287, USA
Shankar Sivaramakrishnan
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 68101, USA
Renu Sharma
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
Jian-Min Zuo
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 68101, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

We report the evolution of titanium dioxide nanostructures when Au nanoparticles, supported on single crystal TiO2 substrates, were heated under ∼260 Pa of flowing O2 in an environmental transmission electron microscope. Nanostructures with different morphologies were first observed around 500°C. Our measurements show that temperature, oxygen pressure, and the electron beam control the nanostructure growth. We propose a reaction-controlled growth mechanism where mobile Ti atoms generated by the electron- beam-induced reduction of TiO2 are preferentially reoxidized at the Au-TiO2 interface.

Type
Material Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The full description of the procedures used in this article requires the identification of certain commercial products and their suppliers. The inclusion of such information should in no way be construed as indicating that such products or suppliers are endorsed by the National Institute of Standards and Technology (NIST) or are recommended by NIST or that they are necessarily the best materials, instruments, software, or suppliers for the purposes described.

See Wee Chee is currently at Rensselaer Polytechnic Institute, Troy, New York

References

REFERENCES

Amin, S.S., Nicholls, A.W. & Xu, T.T. (2007). A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures. Nanotechnology 18, 445609.CrossRefGoogle Scholar
Baik, J.M., Kim, M.H., Larson, C., Chen, X., Guo, S., Wodtke, A.M. & Moskovits, M. (2008). High-yield TiO2 nanowire synthesis and single nanowire field-effect transistor fabrication. App Phys Lett 92, 242111.CrossRefGoogle Scholar
Bennett, R.A., Stone, P. & Bowker, M. (1999). Pd nanoparticle enhanced re-oxidation of non-stoichiometric TiO2: STM imaging of spillover and a new form of SMSI. Catal Lett 59, 99105.CrossRefGoogle Scholar
Chen, X. & Mao, S.S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev 107, 28912959.CrossRefGoogle ScholarPubMed
Cosandey, F. & Madey, T.E. (2001). Growth, morphology, interfacial effects and catalytic properties of Au on TiO2. Surf Rev Lett 8, 7393.CrossRefGoogle Scholar
Dai, Z.R., Pan, Z.W. & Wang, Z.L. (2003). Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13, 924.CrossRefGoogle Scholar
Diebold, U. (2003). The surface science of titanium dioxide. Surf Sci Rep 48, 53229.CrossRefGoogle Scholar
Egerton, R.F., Wang, F. & Crozier, P. (2006). Beam-induced damage to thin specimens in an intense electron probe. Microsc Microanal 12, 6571.CrossRefGoogle Scholar
Henderson, M.A. (1999). A surface perspective on self-diffusion in rutile TiO2. Surf Sci 419, 174187.CrossRefGoogle Scholar
Khan, S.U.M. & Sultana, T. (2003). Photoresponse of n-TiO2 thin film and nanowire electrodes. Sol Energ Mater Sol Cells 76, 211221.CrossRefGoogle Scholar
Kodambaka, S., Tersoff, J., Reuter, M.C. & Ross, F.M. (2006). Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys Rev Lett 96, 096105.CrossRefGoogle ScholarPubMed
Kodambaka, S., Tersoff, J., Reuter, M.C. & Ross, F.M. (2007). Germanium nanowire growth below the eutectic temperature. Science 316, 729732.CrossRefGoogle ScholarPubMed
Lee, J.C., Park, K.S., Kim, T.G., Choi, H.J. & Sung, Y.M. (2006). Controlled growth of high-quality TiO2 nanowires on sapphire and silica. Nanotechnology 17, 43174321.CrossRefGoogle Scholar
Li, M., Hebenstreit, W., Gross, L., Diebold, U., Henderson, M.A., Jennison, D.R., Shultz, P.A. & Sears, M.P. (1999). Oxygen-induced restructuring of the TiO2(110) surface: A comprehensive study. Surf Sci 437, 173190.CrossRefGoogle Scholar
Liu, Z.P., Gong, X.Q., Kohanoff, J., Sanchez, C. & Hu, P. (2003). Catalytic role of metal oxides in gold-based catalysts: A first principles study of CO oxidation on TiO2 supported Au. Phys Rev Lett 91, 266102.CrossRefGoogle ScholarPubMed
McCartney, M.R., Crozier, P.A., Weiss, J.K. & Smith, D.J. (1991). Electron-beam-induced reactions at transition-metal oxide surfaces. Vacuum 42, 301308.CrossRefGoogle Scholar
McCartney, M.R. & Smith, D.J. (1991). Studies of electron irradiation and annealing effects on TiO2 surfaces in ultrahigh vacuum using high-resolution electron microscopy. Surf Sci 250, 169178.CrossRefGoogle Scholar
Sharma, R. (2005). An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J Mater Res 20, 16951707.CrossRefGoogle Scholar
Sharma, R., Rez, P., Brown, M., Du, G. & Treacy, M.M.J. (2007). Dynamic observations of the effect of pressure and temperature conditions on the selective synthesis of carbon nanotubes. Nanotechnology 18, 125602.CrossRefGoogle Scholar
Smith, D.J., McCartney, M.R. & Bursill, L.A. (1987). The electron-beam-induced reduction of transition metal oxide surfaces to metallic lower oxides. Ultramicroscopy 23, 299304.CrossRefGoogle Scholar
Smith, R.D., Bennett, R.A. & Bowker, M. (2002). Measurement of the surface-growth kinetics of reduced TiO2 (110) during reoxidation using time-resolved scanning tunneling microscopy. Phys Rev B 66, 035409.CrossRefGoogle Scholar
Wacaser, B.A., Dick, K.A., Johansson, J., Borgström, M.T., Deppert, K. & Samuelson, L. (2009). Preferential interface nucleation: An expansion of the VLS growth mechanism for nanowires. Adv Mater 21, 153165.CrossRefGoogle Scholar
Wagner, R.S. & Ellis, W.C. (1964). Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4, 8990.CrossRefGoogle Scholar
Wu, J.M., Shih, H.C. & Wu, W.T. (2006). Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology 17, 105109.CrossRefGoogle Scholar
Wu, J.M., Shih, H.C., Wu, W.T., Tseng, Y.K. & Chen, I.C. (2005a). Thermal evaporation growth and the luminescence property of TiO2 nanowires. J Cryst Growth 281, 384390.CrossRefGoogle Scholar
Wu, J.M., Wu, W.T. & Shih, H.C. (2005b). Characterization of single-crystalline TiO2 nanowires grown by thermal evaporation. J Electrochem Soc 152, G613G616.CrossRefGoogle Scholar
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. & Yan, H. (2003). One-dimensional nanostructures: Synthesis, characterization, and applications. Adv Mater 15, 353387.CrossRefGoogle Scholar
Xiang, B., Zhang, Y., Wang, Z., Luo, X.H., Zhu, Y.W., Zhang, H.Z. & Yu, D.P. (2005). Field-emission properties of TiO2 nanowire arrays. J Phys D Appl Phys 38, 11521155.CrossRefGoogle Scholar

Chee Supplementary Video

Chee Supplementary Video 01

Download Chee Supplementary Video(Video)
Video 25.4 MB

Chee Supplementary Video

Chee Supplementary Video 02

Download Chee Supplementary Video(Video)
Video 11.7 MB

Chee Supplementary Video

Chee Supplementary Video 03

Download Chee Supplementary Video(Video)
Video 23.3 MB