Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T05:22:26.190Z Has data issue: false hasContentIssue false

Electron Probe Microanalysis of Ni Silicides Using Ni-L X-Ray Lines

Published online by Cambridge University Press:  26 October 2016

Xavier Llovet*
Affiliation:
Scientific and Technological Centers, Universitat de Barcelona, Lluís Solé i Sabarís 1-3, 08028 Barcelona, Spain
Philippe T. Pinard
Affiliation:
Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany
Erkki Heikinheimo
Affiliation:
Department of Materials Science and Engineering, Aalto University, PO Box 16200, 00076 Aalto, Espoo, Finland
Seppo Louhenkilpi
Affiliation:
Department of Materials Science and Engineering, Aalto University, PO Box 16200, 00076 Aalto, Espoo, Finland
Silvia Richter
Affiliation:
Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany
*
*Corresponding author. [email protected]
Get access

Abstract

We report electron probe microanalysis measurements on nickel silicides, Ni5Si2, Ni2Si, Ni3Si2, and NiSi, which were done in order to investigate anomalies that affect the analysis of such materials by using the Ni L3-M4,5 line (Lα). Possible sources of systematic discrepancies between experimental data and theoretical predictions of Ni L3-M4,5k-ratios are examined, and special attention is paid to dependence of the Ni L3-M4,5k-ratios on mass-attenuation coefficients and partial fluorescence yields. Self-absorption X-ray spectra and empirical mass-attenuation coefficients were obtained for the considered materials from X-ray emission spectra and relative X-ray intensity measurements, respectively. It is shown that calculated k-ratios with empirical mass attenuation coefficients and modified partial fluorescence yields give better agreement with experimental data, except at very low accelerating voltages. Alternatively, satisfactory agreement is also achieved by using the Ni L3-M1 line (Lℓ) instead of the Ni L3-M4,5 line.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammann, N. & Karduck, P. (1990). A further developed Monte Carlo model for the quantitative EPMA of complex samples. In Microbeam Analysis, Michael, J.R. & Ingram P. (Eds.), pp. 150154. San Francisco, CA: San Francisco Press.Google Scholar
Bastin, G.F & Heijligers, H.J.M. (1990). Quantitative electron probe microanalysis of ultra-light elements (BoronOxygen). In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Eds.), pp. 145161. New York: Plenum Press.Google Scholar
Bonnelle, C. (1966). Contribution a l'étude des métaux de transition du premier groupe, du cuivre et de leurs oxides par spectroscopie X dans le domaine de 13 à 22 Å. Ann Phys (Paris) 84, 439481.Google Scholar
Bonnelle, C. (1982). Resonant X-ray emission spectroscopy in solids. In Advances in X-ray Spectroscopy, Bonnelle, C. & Mandé, C. (Eds.), pp. 104121. Oxford: Pergamon Press.Google Scholar
Bonnelle, C. (1987). X-ray spectroscopy. Annu Rep Progr Chem, Sect C, Phys Chem 84, 201272.CrossRefGoogle Scholar
Campbell, J.L. & Papp, T. (2001). Widths of the atomic K-N7 levels. Atom Data Nucl Data Tables 77, 156.Google Scholar
Cauchois, Y. & Mott, N.F. (1949). The interpretation of X-Ray absorption spectra in solids. Philos Mag 4, 12601269.Google Scholar
Chantler, C.T., Olsen, K., Dragoset, R.A., Chang, J., Kishore, A.R., Kotochigova, S.A. & Zucker, D.S. (2005). X-ray form factor, attenuation and scattering tables (version 2.1). National Institute of Standards and Technology, Gaithersburg, MD. Available at http://physics.nist.gov/ffast (retrieved October 10, 2016).Google Scholar
Cheynet, M.C. & Pantel, R. (2006). Dielectric and optical properties of nanometric nickel silicides from valence electron energy-loss spectroscopy experiments. Micron 37, 377384.Google Scholar
Chopra, D. (1970). Ni L self-absorption spectrum. Phys Rev A 1, 230235.Google Scholar
Cullen, D.E., Hubbell, J.H. & Kissel, L. (1997). EPDL97 The Evaluated Data Library, Technical Report UCRL-50400. Lawrence Livermore National Laboratory, Livermore, CA.Google Scholar
Falch, S., Lamparter, P. & Steeb, S. (1984). X-ray emission and absorption spectroscopy with binary amorphous alloys from the B-Co-, B-Ni-, Co-P-, Co-Ti-, Cu-Mg-, Cu-Ti-, Mg-Zn-, Ni-P-, and Ni-Ti-systems. Z Naturforsch 39a, 11751183.CrossRefGoogle Scholar
Fialin, M. (1990). Some considerations on the use of Lα series of transition metals in electron probe microanalysis: The example of zinc minerals. X-Ray Spectrom 19, 169172.CrossRefGoogle Scholar
Fialin, M., Wagner, C. & Rémond, G. (1998). X-ray emission valence band spectrometry: application to Cu and Fe L-series. In Proceedings of EMAS 98. Llovet, X., Merlet, C. & Salvat, F. (Eds.), pp. 129140. Barcelona: EMAS and Universitat de Barcelona.Google Scholar
Franciosi, A., Weaver, J.H. & Schmidt, F.A. (1982). Electronic structure of nickel sicilides Ni2Si, NiSi, and NiSi2 . Phys Rev B 26, 546552.CrossRefGoogle Scholar
Gauvin, R. (2012). What remains to be done to allow quantitative X-ray microanalysis performed with EDS to become a true characterization technique. Microsc Microanal 18, 915940.Google Scholar
Gopon, P., Fournelle., J., Sobol, P. & Llovet, X. (2013). Low-voltage electron-probe microanalysis of Fe-Si compounds using soft X-rays. Microsc Microanal 19, 16981708.Google Scholar
Henke, B.L., Gullikson, E.M. & Davis, J.C. (1993). X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E=50-30,000 eV, Z=1-92. Atom Data Nucl Data Tables 54, 181342.Google Scholar
Henke, B.L., Lee, T.J., Tanaka, R.J., Shimabukuro, R.L. & Fijikawa, B.K. (1982). Low energy X-ray interaction coefficients: Photoabsorption, scattering and reflection. At Data Nucl Data Tables 27, 1144.Google Scholar
Heikinheimo, E., Pinard, P., Richter, S., Llovet, X. & Louhenkilpi, S. (2016). Electron probe microanalysis of Ni-silicides at low voltage: Difficulties and possibilities. IOP Conf Series Mat Sci Eng 109, 012005.Google Scholar
Heinrich, K.F.J. (1986). Mass attenuation coefficients for electron microprobe analysis. In Proceedings of the 11th International Congress on X-Ray Optics and Microanalysis, Brown, J.D. & Packwood, R.H. (Eds.), pp. 67119. London, Canada: University Western Ontario.Google Scholar
Hoszowska, J. & Dousse, J-Cl. (1996). Enhanced X-ray emission from the valences states to the 1s and 2s levels in metallic Mo and several Mo compounds. J Phys B: At Mol Opt Phys 29, 16411653.Google Scholar
Jarrige, I., Capron, N. & Jonnard, P. (2009). Electronic structure of Ni and Mo silicides investigated by X-ray emission spectroscopy and density functional theory. Phys Rev B 79, 035117.Google Scholar
Jonnard, P., Brisset, F., Robaut, F., Wille, G. & Ruste, J. (2014). Inter-laboratory comparison of a WDS–EDS quantitative X-ray microanalysis of a metallic glass. X-Ray Spectrom 44, 2429.Google Scholar
Jonnard, P., Jarrige, I. & Bonnelle, C. (2005). Satellite lines induced by electrons of near-threshold energy in the X-ray emission band spectra of 3d, 4d, and 5d transition metals. Phys Rev B 71, 155107.Google Scholar
Kalayci, Y., Agus, Y., Ozgur, S., Efe, N., Zararsiz, A., Arikan, P. & Mutlu, R.H. (2005). Influence of the alloying effect on nickel K-shell fluorescence yield in Ni-Si alloys. Spectrochim Acta B 60, 277279.Google Scholar
Kurmaev, É.Z., Ankudinow, A.L., Rehr, J.J., Finkelstein, L.D., Karimov, P.F. & Moewesc, A. (2005b). The L2:L3 intensity ratio in soft X-ray emission spectra of 3d-metals. J Electr Spectr and Relat Phenom 148, 14.CrossRefGoogle Scholar
Kurmaev, É.Z., Zatsepin, D.A., Cholakh, S.O., Schmidt, B., Harada, Y., Tokushima, T., Osawa, H., Shin, S. & Takeuchi, T. (2005a). Iron nanoparticles in amorphous SiO2: X-Ray emission and absorption spectra. Phys Solid State 47, 754757.Google Scholar
Lábár, J. & Salter, C.J. (1991). Uncertainties in the analysis of M X-ray lines of rare-earth elements. In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Eds.), pp. 223249. New York: Plenum Press.CrossRefGoogle Scholar
Liu, Y., Lin, J., Huang, G., Guo, Y. & Duan, C. (2001). Simple empirical analytical approximation to the Voigt profile. J Opt Soc Am B 5, 666672.Google Scholar
Llovet, X., Fernández-Varea, J.M., Sempau, J. & Salvat, F. (2005). Monte Carlo simulation of X-ray emission using the general-purpose code PENELOPE. Surf Interface Anal 37, 10541058.Google Scholar
Llovet, X., Heikinheimo, E, Núñez, A, Merlet, C, Almagro, J F, Richter, S, Fournelle, J & van Hoek, C.G. (2012). An inter-laboratory comparison of EPMA analysis of alloy steel at low voltage. IOP Conf Series Mat Sci Eng 32, 012014.Google Scholar
Merlet, C. & Llovet, X. (2012). Uncertainty and capability of quantitative EPMA at low voltage – a review. IOP Conf Series: Mat Sci Eng 32, 012016.Google Scholar
Müller, M., Beckhoff, B., Fliegauf, R. & Kanngieβer, B. (2009). Nickel L III fluorescence and satellite transition probabilities determined with an alternative methodology for soft-X-ray emission spectrometry. Phys Rev A 74, 12702.Google Scholar
Nagel, D. (1968). Absorption edge effects in electron probe microanalysis. In Quantitative Electron Probe Microanalysis, Heinrich, K.F.J (Ed.), vol. 298, pp. 189196. Washington, DC: National Bureau of Standards Special Publication.Google Scholar
Newbury, D.E. (2002). Barriers to quantitative electron probe X-ray microanalysis for low voltage scanning electron microscope. J Res Natl Inst Stand Technol 107, 605619.Google Scholar
Pouchou, J.L. (1996). Use of soft X-rays in microanalysis. Mikrochim Acta 13, 3960.Google Scholar
Pouchou, J.L. & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In Electron Probe Quantitation, Heirinch, K.F.J. & Newbury, D.E. (Eds.), pp. 223249. New York: Plenum Press.Google Scholar
Pouchou, J.L. & Pichoir, F. (1988). A simplified version of the “PAP” model for matrix corrections in EPMA. In Microbeam Analysis, Newbury, D.E. (Ed.), pp. 319324. San Francisco, CA: San Francisco Press.Google Scholar
Pinard, P.T. & Richter, S. (2014). Improving the quantification at high spatial resolution using a field emission electron microprobe. IOP Conf Series Mat Sci Eng 55, 012016.Google Scholar
Pinard, P.T, Heikinheimo, E., Llovet, X. & Richter, S. (2014). Towards reliable quantification of steel alloys at low voltage. Microsc Microanal 20(Suppl 3), 700701.CrossRefGoogle Scholar
Reed, S.J.B (1993). Electron Microprobe Analysis. Cambridge: Cambridge University Press.Google Scholar
Rémond, G., Campbell, J.L., Packwood, R.H. & Fialin, M. (2003). Spectral decomposition of wavelength dispersive X-ray spectra: Implications for quantitative analysis in the electron probe microanalyzer. Scanning Microsc 5, 89132.Google Scholar
Rémond, G., Gilles, C., Fialin, M, Rouer, O., Marinenko, R, Myklebust, R & Newbury, D. (1996). Intensity measurement of wavelength-dispersive X-ray emission bands: Applications to the soft X-ray region. Mikrochim Acta 13, 6186.Google Scholar
Ritchie, N.W.M. (2009). Spectrum simulation in DSTA-II. Microsc Microanal 15, 454468.Google Scholar
Salvat, F. (2015). PENELOPE-2014. A Code System for Monte Carlo Simulation of Electron and Photon Transport. Issy-les-Moulineaux: OECD/Nuclear Energy Agency.Google Scholar
Sham, T.K. (1985). L-edge X-ray-absorption systematics of the noble metals Rh, Pd, and Ag and the main-group metals In and Sn: A study of the unoccupied density of states in 4d elements. Phys Rev B 31, 18881902.Google Scholar
Statham, P. & Holland, J. (2013). Prospects for higher spatial resolution quantitative X-ray analysis using transition element L-lines. IOP Conf Series Mater Sci Eng 55, 012017.Google Scholar
Sorensen, S.L., Schaphorst, S.J., Whitfield, S.B., Crasemann, B. & Carr, R. (1991). L-shell Coster-Kronig transition probabilities in Ni, Cu and Mo measured with synchroton radiation. Phys Rev A 44, 350357.Google Scholar
Willich, P. & Bethke, R. (1996). Practical aspects and applications of EPMA at low electron energies. Mikrochim Acta 13, 631638.Google Scholar