Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T19:51:13.942Z Has data issue: false hasContentIssue false

Electron Probe Microanalysis: A Review of the Past, Present, and Future

Published online by Cambridge University Press:  12 May 2015

Romano Rinaldi*
Affiliation:
ex Dipartimento di Scienze della Terra (now Physics and Geology), Università di Perugia, 06123 Perugia, Italy
Xavier Llovet
Affiliation:
Scientific and Technological Centers (CCiTUB), Universitat de Barcelona, Lluís Solé Sabarís 1-3, 08028 Barcelona, Spain
*
*Corresponding author. [email protected]
Get access

Abstract

The 50th anniversary of the application of electron probe microanalysis (EPMA) to the Earth Sciences provides an opportunity for an assessment of the state-of-the-art of the technique. Stemming from the introduction of the first automated instruments, the latest developments of EPMA and some typical applications are reviewed with an eye to the future. The most noticeable recent technical achievements such as the field-emission electron gun, the latest generation of energy and wavelength dispersive spectrometers, and the development of analytical methods based on new sets of first principle data obtained by the use of sophisticated computer codes, allow for the extension of the method to the analysis of trace elements, ultra-light elements (down to Li), small particles, and thin films, with a high degree of accuracy and precision and within a considerably reduced volume of interaction. A number of working examples and a thorough list of references provide the reader with a working knowledge of the capabilities and limitations of EPMA today.

Type
EMAS Special Issue
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albee, A.L. & Ray, L. (1970). Correction factors for electron probe microanalysis of silicates, oxides, carbonates, phosphates and sulphates. Anal Chem 42, 14081414.Google Scholar
Armigliato, A., Desalvo, A., Garulli, A. & Rosa, R. (1983). Thickness determination of Al films on Si by a Monte Carlo code using a secondary fluorescence correction. 10th ICXOM, Toulouse 5–9 September. Journal de Physique 43(Suppl 2), C2-29C2-32.Google Scholar
Armigliato, A., Desalvo, A., Rinaldi, R. & Rosa, R. (1979). Application of Monte Carlo technique to the electron probe microanalysis of ternary Si-B-O films on silicon. J Phys D Appl Phys 12, 12991308.Google Scholar
Barkshire, I., Karduck, P., Rehbach, W.P. & Richter, S. (2000). High-spatial resolution low-energy electron beam X-ray microanalysis. Mikrochim Acta 132, 113128.Google Scholar
Bastin, G.F. & Heijligers, H.J.M. (2000 a). A systematic database of thin-film measurements by EPMA—Part I—Aluminum films. X-Ray Spectrom 29, 212238.Google Scholar
Bastin, G.F. & Heijligers, H.J.M. (2000 b). A systematic database of thin-film measurements by EPMA—Part II—Palladium films. X-Ray Spectrom 29, 373397.3.0.CO;2-S>CrossRefGoogle Scholar
Bastin, G.F., Oberndorff, P.J.T.L., Dijkstra, J.M. & Heijligers, H.J.M. (2001). Extension of PROZA96 to conditions of non-perpendicular incidence of the electron beam. X-Ray Spectrom 30, 382387.Google Scholar
Bastin, G.F., van Loo, F.J.J., Vosters, P.J.C. & Vrolijk, J.W.G.A. (1983). A correction procedure for characteristic fluorescence encountered in microprobe analysis near phase boundaries. Scanning 5, 172183.Google Scholar
Berger, D. & Nissen, J. (2014). Measurement and Monte Carlo simulation of the spatial resolution in element analysis with the FEG-EPMA JEOL JXA-8530F. IOP Conf Ser: Mater Sci Eng 55, 012002.Google Scholar
Bowles, J.F.W. (2015). Age dating from electron microprobe analyses of U, Th and Pb: Benefits and pitfalls. Microsc Microanal, this issue.CrossRefGoogle Scholar
Burdet, P., Hébert, C. & Cantoni, M. (2014). Enhanced quantification for 3D energy dispersive spectrometry: Going beyond the limitation of large volume of X-ray emission. Microsc Microanal 20, 15441555.Google Scholar
Buse, B. & Kearns, S. (2014). Importance of carbon contamination in high-resolution (FEG) EPMA of silicate minerals. Microsc Microanal 20(Suppl 3), 704705.Google Scholar
Castaing, R. (1951). Application des sondes électroniques à une méthode d’analyse ponctuelle chimique et cristallographique. Thèse présenté à la Faculté des Science de Université de Paris, le 8 Juin, Série A, No. 2423, No. d’ordre 3295.Google Scholar
Chöel, M., Deboudt, K. & Flament, P. (2007). Evaluation of quantitative procedures for X-ray microanalysis of environmental particles. Microsc Res Tech 70, 9961002.Google Scholar
Donovan, J.J. (2011). High sensitivity EPMA: Past, present and future. Microsc Microanal 17(Suppl 2), 560561.Google Scholar
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. & Gauvin, R. (2007). CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92101.Google Scholar
Duncumb, P. (2001). Microprobe design in the 1950s: Some examples in Europe. Microsc Microanal 7, 100107.Google Scholar
Duncumb, P. & Statham, P.J. (2002). Benefits of X-ray spectrum simulation at low energies. Mikrochim Acta 138, 249258.Google Scholar
Fialin, M., Rémy, H., Richard, C. & Wagner, C. (1999). Trace element analysis with the electron microprobe: New data and perspectives. Am Mineral 84, 7077.Google Scholar
Ganguly, J., Bhattacharya, R.N. & Chakraborty, S. (1988). Convolution effect in the determination of compositional profiles and diffusion coefficients in microprobe step scans. Am Mineral 73, 901909.Google Scholar
Gauvin, R., Lifshin, E., Demers, H., Horny, P. & Campbell, H. (2006). Win X-ray: A new Monte Carlo program that computes X-ray spectra obtained with a scanning electron microscope. Microsc Microanal 12, 4964.Google Scholar
Gopon, P., Fournelle, J., Sobol, P.E. & Llovet, X. (2013). Low voltage electron-probe microanalysis of Fe-Si compounds using soft X-rays. Microsc Microanal 19, 16981708.Google Scholar
Grillon, F. & Philibert, J. (2002). The legacy of Raymond Castaing. Microchim Acta 138, 99104.Google Scholar
Horny, P., Lifshin, E., Campbell, H. & Gauvin, R. (2010). Development of a new quantitative X-ray microanalysis method for electron microscopy. Microsc Microanal 16, 821830.CrossRefGoogle ScholarPubMed
Jercinovic, M.J. & Williams, M.L. (2005). Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects. Am Mineral 90, 526546.Google Scholar
Jercinovic, M.J., Williams, M.L., Allaz, J. & Donovan, J.J. (2012). Trace analysis in EPMA. IOP Conf Ser Mat Sci Eng 32, 012012.Google Scholar
Jercinovic, M.J., Williams, M.L. & Lane, E.D. (2008). In-situ trace element analysis of monazite and other fine-grained accessory minerals by EPMA. Chem Geol 254, 197215.Google Scholar
Jonnard, P., Brisset, F., Robaut, F., Wille, G. & Ruste, J. (2014). An interlaboratory comparison of WDS-EDS quantitative X-ray microanalysis of a metallic glass. X-Ray Spectrom 44, 2429.Google Scholar
Kane, W.T. (1974). A CAMAC automated electron microprobe. 9th Annual Conference of the Microbeam Analysis Society, Tutorial and Proceedings, paper 32, July 22–26, Ottawa, Canada, pp. A–C.Google Scholar
Keil, K. (1973). Applications of the Electron Microprobe in Geology. In Microprobe Analysis (chapter 5 Andersen C.A. (Ed.), pp. 189239). New York, USA: John Wiley & Sons.Google Scholar
Kimura, T., Nishida, K. & Tanuma, S. (2006). Spatial resolution of a wavelength-dispersive electron probe microanalyzer equipped with a thermal field emission gun. Microchim Acta 155, 175178.Google Scholar
Kubo, Y., Hamara, K. & Urano, A. (2013). Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis. Ultramicroscopy 135, 6470.CrossRefGoogle ScholarPubMed
Lavrent’ev, Y.G., Korolyuk, V.N. & Usova, L.V. (2004). Second generation of correction methods in electron probe X-ray microanalysis: Approximation models for emission depth distribution functions. J Anal Chem 59, 600616.Google Scholar
Limandri, S.P., Bonetto, R.D., Galván-Josa, V., Carreras, A.C. & Trincavelli, J.C. (2012). Standardless quantification by parameter optimization in electron probe microanalysis. Spectrochim Acta B 77, 4451.Google Scholar
Llovet, X., Fernández-Varea, J.M., Sempau, J. & Salvat, F. (2005). Monte Carlo simulation of X-ray emission using the general-purpose code PENELOPE. Surf Interface Anal 37, 10541058.Google Scholar
Llovet, X. & Galán, G. (2003). Correction of secondary X-ray fluorescence near grain boundaries in electron microprobe analysis: Application to thermobarometry of spinel lherzolites. Am Mineral 88, 121130.Google Scholar
Llovet, X., Heikinheimo, E., Núñez, A., Merlet, C., Almagro, J.F., Richter, S., Fournelle, J. & van Hoek, C.J.G. (2012). An inter-laboratory comparison of EPMA analysis of alloy steel at low voltage. IOP Conf Ser Mater Sci Eng 32, 012014.Google Scholar
Llovet, X. & Merlet, C. (2010). Electron probe microanalysis of thin films and multilayers using the computer program XFILM. Microsc Microanal 16, 2132.CrossRefGoogle ScholarPubMed
Llovet, X., Pinard, P.T., Donovan, J.J. & Salvat, F. (2012). Secondary fluorescence in electron probe microanalysis of material couples. J Phys D Appl Phys 45, 225301.CrossRefGoogle Scholar
Llovet, X., Salvat, F., Bote, D., Salvat-Pujol, F., Jablonski, A. & Powell, C.J. (2014 a). NIST Database of Cross Sections for Inner-Shell Ionization by Electron and Positron Impact. Version 1.0. Gaithersburg, Maryland: National Institute of Standards and Technology.Google Scholar
Llovet, X., Salvat, F., Powell, C.J. & Jablonski, A. (2014 b). Cross sections for inner-shell ionization by electron impact. J Phys Chem Ref Data 43, 013102.Google Scholar
Llovet, X., Valovirta, E. & Heikinheimo, E. (2000). Monte Carlo simulation of secondary fluorescence in small particles and at phase boundaries. Microchim Acta 132, 205212.CrossRefGoogle Scholar
Love, G., Sewell, D.A. & Scott, V.D. (1983). An improved absorption correction for quantitative analysis. 10th ICXOM, Toulouse 5–9 September. Journal de Physique 43(Suppl 2), C2-21C2-24.Google Scholar
MacRae, C.M., Wilson, N.C. & Torpy, A. (2014). Multi-spectral electron microprobe—Now and the future. Microsc Microanal 20(Suppl 3), 21642165.Google Scholar
Maniguet, L., Robaut, F., Meuris, A., Roussel-Dhebey, F. & Charlot, F. (2012). X-ray microanalysis: The state of the art of SDD detectors and WDS systems on scanning electron microscopes (SEM). IOP Conf Ser Mater Sci Eng 32, 012015-1-19.Google Scholar
Marinenko, R.B. & Leigh, S. (2010). Uncertainties in electron probe microanalysis. IOP Conf Ser Mater Sci Eng 7, 012017.Google Scholar
McSwiggen, P. (2014). Characterisation of sub-micrometer features with the FE-EPMA. IOP Conf Ser Mater Sci Eng 55, 012009-1-12.Google Scholar
McSwiggen, P., Armstrong, J.T. & Nielsen, C. (2014). Strategies for low accelerating voltage X-ray microanalysis of sub-micrometer features with the FE-EPMA. Microsc Microanal 20(Suppl 3), 688689.CrossRefGoogle Scholar
Merlet, C. & Bodinier, J.-L. (1990). Electron microprobe determination of minor and trace transition elements in silicate minerals: A method and its application to mineral zoning in the peridotite nodule PHN 1611. Chem Geol 83, 5569.CrossRefGoogle Scholar
Merlet, C. & Llovet, X. (2012). Uncertainty and capability of quantitative EPMA at low voltage—a review. IOP Conf Ser Mater Sci Eng 32, 012016-1-15.Google Scholar
Merlet, C., Llovet, X. & Salvat, F. (2004). Measurements of the surface ionization in multilayered specimens. X-Ray Spectrom 33, 376386.Google Scholar
Moreno, I., Almagro, J.F. & Llovet, X. (2002). Determination of nitrogen in duplex stainless steels by EPMA. Microchim Acta 139, 105110.Google Scholar
Mori, N., Kuypers, S., Tanaka, T., Nakajima, K. & Kimura, T. (2011). Trace element analysis of sulphur in a Japanese sword. EMAS 2011 12th European Workshop on Modern Developments and Applications of Microbeam Analysis, Angers (France). 15-19 May 2011, Book of Abstracts. p. 369.Google Scholar
Murata, K., Cvikevich, S. & Kuptsis, J.D. (1983). A Monte Carlo simulation approach to thin film electron microprobe analysis based on the use of Mott scattering cross section. 10th ICXOM, Toulouse 5–9 September. Journal de Physique 43(Suppl 2), C2-13C2-16.Google Scholar
Myklebust, R.L. & Newbury, D.E. (1995). Monte Carlo modeling of secondary fluorescence across phase boundaries in electron probe microanalysis. Scanning 17, 235242.Google Scholar
Newbury, D.E. (2002). Barriers to quantitative electron probe X-ray microanalysis for low voltage scanning electron microscopy. J Res Natl Inst Stand Technol 107, 605619.Google Scholar
Newbury, D.E. & Ritchie, N.W.M. (2013). Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative? Scanning 35, 141168.Google Scholar
Ohnuma, I., Abe, S., Shimenouchi, S., Omori, T., Kainuma, R. & Ishida, K. (2012). Experimental and thermodynamic studies of the Fe–Si binary system. ISIJ International 52, 540548.Google Scholar
Pinard, P.T. & Richter, S. (2014). Improving the quantification at high spatial resolution using a field emission electron microprobe. IOP Conf Ser Mater Sci Eng 55, 012016-1-16.Google Scholar
Pistorius, P.C. & Verma, N. (2011). Matrix effects in the energy dispersive X-ray analysis of CaO-Al2O3-MgO inclusions in steel. Microsc Microanal 17, 963971.Google Scholar
Pouchou, J.L. (1996). Use of soft X-rays in microanalysis. Mikrochim Acta 13(Suppl), 3960.Google Scholar
Pouchou, J.L. (2002). X-ray microanalysis of thin surface films and coatings. Microchim Acta 138, 133152.Google Scholar
Pouchou, J.L. & Pichoir, F. (1983 a). Extension des possibilités quantitatives de la microanalyse par une formulation nouvelle des effets de matrice. 10th ICXOM, Toulouse 5–9 September. Journal de Physique 43(Suppl 2), C2-17C2-20.Google Scholar
Pouchou, J.L. & Pichoir, F. (1983 b). Analyse d’échantillons stratifiés à la microsonde électronique. 10th ICXOM, Toulouse 5–9 September. Journal de Physique 43(Suppl 2), C2-47C2-50.Google Scholar
Pouchou, J.L. & Pichoir, F. (1993). Electron probe X-ray microanalysis applied to thin surface films and stratified specimens. Scan Microsc 7(Suppl), 167189.Google Scholar
Pownceby, M.I., MacRae, C.M. & Wilson, N.C. (2007). Mineral characterisation by EPMA mapping. Miner Eng 20, 444451.Google Scholar
Prêt, D., Sammartino, S., Beaufort, D., Meunier, A., Fialin, M. & Michot, L.J. (2010). A new method for quantitative petrography based on image processing of chemical element maps: Part I. Mineral mapping applied to compacted bentonites. Am Mineral 95, 13791388.Google Scholar
Reed, S.J.B. (2000). Quantitative trace analysis by wavelength-dispersive EPMA. Microchim Acta 132, 145151.Google Scholar
Reed, S.J.B. & Long, J.V.P. (1963). Electron probe measurements near phase boundaries. In Proc. ICXOM, (Cosslett V.E. & Engström A. (Eds.), pp. 317327). New York: Academic Press.Google Scholar
Rinaldi, R. (1978). Results and perspectives of the multiple and differentiated access to an electron microprobe laboratory. J Microsc Spectrosc Electron 3, 1213.Google Scholar
Rinaldi, R. (1979). La microanalisi elettronica: Strumentazione e applicazioni mineralogico-petrografiche. Rend Soc It Mineral Petrol 35, 507526.Google Scholar
Rinaldi, R. (1980). Automated WDS electron probe microanalysis: A floppy disk operative system. Ultramicroscopy 5, 378.Google Scholar
Rinaldi, R. (1981). La microanalisi elettronica. In Microscopia a Scansione e Microanalisi (Capitolo 3, Parte II Microanalisi Armigliato A. & Valdrè e.U. (Eds.), pp. 242294). Bologna, Italy: Centro Stampa Lo Scarabeo.Google Scholar
Rinaldi, R. (1985). Microanalisi-X: Recenti sviluppi e aspetti pratici. Rend Soc It Mineral Petrol 40, 241254.Google Scholar
Rinaldi, R. (1997). La microanalisi elettronica: Lineamenti storici e princìpi. Plinius (Ital Supp Eur J Mineral) 18, 214224.Google Scholar
Ritchie, N.W.M. (2005). A new Monte Carlo application for complex sample geometries. Surf Interface Anal 37, 10061011.Google Scholar
Ritchie, N.W.M. & Newbury, D.E. (2012). Uncertainty estimates for electron probe X-ray microanalysis measurements. Anal Chem 84, 99569962.Google Scholar
Ritchie, N.W.M., Newbury, D.E. & Davis, J.M. (2012). EDS measurements of X-ray intensity at WDS precision and accuracy using a silicon drift detector. Microsc Microanal 18, 892904.Google Scholar
Ro, C., Osan, J., Szalóki, I., de Hoog, J., Worobiec, A. & Van Grieken, R. (2003). A Monte Carlo program for quantitative electron-induced X-ray analysis of individual particles. Anal Chem 15, 851859.Google Scholar
Rucklidge, J.C., Gasparrini, E., Smith, J.V. & Knowles, C.R. (1971). X-ray emission microanalysis of rock-forming minerals. VIII. Amphiboles. Can J Earth Sci 8, 11711183.Google Scholar
Salvat, F., Fernández-Varea, J.M. & Sempau, J. (2011). PENELOPE—A Code System for Monte Carlo Simulation of Electron and Photon Transport. Issy-les-Moulineaux: OECD/Nuclear Energy Agency.Google Scholar
Smith, J.V. (1965). X-ray-emission microanalysis of rock forming minerals I. Experimental techniques. J Geol 73, 830864.Google Scholar
Smith, J.V. & Ribbie, P.H. (1966). X-ray-emission microanalysis of rock forming minerals III. Alkali feldspars. J Geol 74, 197216.Google Scholar
Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.-L., Danyushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A., Kamenetsky, V.S., Kerr, A.C., Krivolutskaya, N.A., Matvienkov, V.V., Nikogosian, I.K., Rocholl, A., Sigurdsson, I.A., Sushchevskaya, N.M. & Teklay, M. (2007). The amount of recycled crust in sources of mantle-derived melts. Science 316, 412417.Google Scholar
Sorbier, L., Rosenberg, E. & Merlet, C. (2004). Microanalysis of porous materials. Microsc Microanal 10, 745752.Google Scholar
Statham, P., Duncumb, P. & Llovet, X. (2014). Systematic discrepancies in Monte Carlo predictions of K-ratios emitted from thin films on substrates. IOP Conf Ser Mater Sci Eng 32, 012024.Google Scholar
Statham, P. & Holland, J. (2014). Prospects for higher spatial resolution quantitative X-ray analysis using transition element L-lines. IOP Conf Ser Mater Sci Eng 55, 012017.Google Scholar
Stumpfl, E.F. (1961). Some new platinum-rich minerals identified with the electron microanalyser. Mineralog Mag 32, 833847.Google Scholar
Stumpfl, E.F. & Clark, A.M. (1965). Electron-Probe Microanalysis of Gold-Platinoid Concentrates from Southeast Borneo, vol. 74, pp. 933–946. Inst Mining & Metallurg Trans.Google Scholar
Takahashi, H., McSwiggen, P. & Nielsen, C. (2014 a). A unique wavelength-dispersive soft X-ray emission spectrometer for electron probe X-ray microanalyzers. Microsc Anal 15, S5S8.Google Scholar
Takahashi, H., Murano, T., Takakura, M., Handa, N., Terauchi, M., Koike, M., Kawachi, T., Imazono, T., Hasegawa, N., Koeda, M., Nagano, T., Sasai, H., Oue, Y., Yonezawa, Z. & Kuramoto, S. (2014 b). Characteristic features and applications of a newly developed wavelength dispersive soft X-ray emission spectrometer for electron probe X-ray microanalyzers and scanning electron microscopes. JEOL News 49, 7380.Google Scholar
Terauchi, M., Koshiya, S., Satoh, F., Takahashi, H., Handa, N., Murano, T., Koike, M., Imazono, T., Koeda, M., Nagano, T., Sasai, H., Oue, Y., Yonezawa, Z. & Kuramoto, S. (2014). Chemical state information of bulk specimens obtained by SEM-based soft-X-ray emission spectrometry. Microsc Microanal 20, 692697.Google Scholar
Trincavelli, J.C., Limandri, S.P. & Bonetto, R.D. (2014). Standardless quantification methods in electron probe microanalysis. Spectrochim Acta B 101, 7685.Google Scholar
Wade, J. & Wood, B. (2012). Metal–silicate partitioning experiments in the diamond anvil cell: A comment on potential analytical errors. Phys Earth Plan Inter 192–193, 5458.Google Scholar
Willich, P. & Bethke, R. (1996). Practical aspects and applications of EPMA at low electron energies. Mikrochim Acta 13(Suppl), 631638.Google Scholar
Wuhrer, R., Moran, K. & Moran, L. (2006). Characterisation of materials through X-ray mapping. Mater Forum 30, 6370.Google Scholar
Ziebold, T.h.O. (1967). Precision and sensitivity in electron microprobe analysis. Anal Chem 39, 858861.Google Scholar