Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T02:32:38.941Z Has data issue: false hasContentIssue false

Electron Microscopy Studies of Potassium Sodium Niobate Ceramics

Published online by Cambridge University Press:  15 November 2005

Darja Jenko
Affiliation:
“Jožef Stefan” Institute, Electronic Ceramics Department, Jamova 39, SI-1000 Ljubljana, Slovenia
Andreja Benčan
Affiliation:
“Jožef Stefan” Institute, Electronic Ceramics Department, Jamova 39, SI-1000 Ljubljana, Slovenia
Barbara Malič
Affiliation:
“Jožef Stefan” Institute, Electronic Ceramics Department, Jamova 39, SI-1000 Ljubljana, Slovenia
Janez Holc
Affiliation:
“Jožef Stefan” Institute, Electronic Ceramics Department, Jamova 39, SI-1000 Ljubljana, Slovenia
Marija Kosec
Affiliation:
“Jožef Stefan” Institute, Electronic Ceramics Department, Jamova 39, SI-1000 Ljubljana, Slovenia
Get access

Abstract

Using electron microscopy, K0.5Na0.5NbO3 (KNN) ceramics sintered at 1030°C for 8 h and 1100°C for 2 and 24 h was studied. The scanning electron microscopy and X-ray spectrometry revealed that the materials consisted of a matrix phase in which the (Na+K)/Nb ratio corresponded closely to the nominal composition and a small amount of Nb-rich secondary phase. A bimodal microstructure of cube-shaped grains was revealed in the fracture and thermally-etched surfaces of the KNN. In the ceramics sintered at 1100°C, the larger grains (up to 30 μm across), contained angular trapped pores. The transmission electron microscopy analysis revealed that the crystal planes of the grains bordering the intragranular pore faces were of the {100} family with respect to the simple perovskite cell. Ferroelectric domains were observed in the grains of this material.

Type
Papers from the European Microbeam Analysis Society Regional Workshop in Bled, Slovenia
Copyright
© 2005 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahn, Z.S. & Schulze, W.A. (1987). Conventionally sintered (Na0.5,K0.5)NbO3 with barium additions. J Am Ceram Soc 70 (1), C18C21.Google Scholar
Ahtee, M. & Hewat, A.W. (1978). Structural phase transitions in sodium-potassium niobate solid solutions by neutron powder diffraction. Acta Crystallogr A 34, 309317.Google Scholar
Edington, J.W. (1974). 3: Interpretation of transmission electron micrographs. In Monographs in Practical Electron Microscopy in Material Science, p. 45. London, Basingstoke, UK: The Macmillan Press Ltd.
Flückiger, U., Arend, H., & Oswald, H.R. (1977). Synthesis of KNbO3 powder. Am Ceram Soc Bull 56 (6), 575577.Google Scholar
Jaeger, R.E. & Egerton, L. (1962). Hot-pressing of potassium-sodium niobates. J Am Ceram Soc 45 (5), 209213.Google Scholar
Jaffe, B., Cook, W.R., Jr., & Jaffe, H. (1971). Perovskite niobates and tantalates and other ferroelectric and antiferoelectric perovskites. In Piezoelectric Ceramics, Roberts, J.P. & Popper, P. (Eds.), pp. 185212. London, New York: Academic Press.
Jbara, O., Cazaux, J., & Trebbia, P. (1995). Sodium diffusion in glasses during electron irradiation. J Appl Phys 78 (2), 868875.Google Scholar
JCPDS-ICDD 71-2171, PCPDFWIN Version 2.02, 1999.
JCPDS-ICDD 77-0038, PCPDFWIN Version 2.02, 1999.
Jenko, D., Malič, B., Bernard, J., Cilenšek, J., & Kosec, M. (2003). Synthesis and sintering of KNN 50/50 ceramics. Mater Technol 37, 4952.Google Scholar
Katz, L. & Megaw, H.D. (1967). The structure of potassium niobate at room temperature: The solution of a pseudosymmetric structure by Fourier methods. Acta Crystallogr 22, 639684.Google Scholar
Kodaira, K., Shioya, J.S., Shimada, S., & Matsushita, T. (1982). Sintering and dielectric properties of KNbO3. J Mat Sci Lett 1, 227278.Google Scholar
Kosec, M. & Kolar, D. (1975). On activated sintering and electrical properties of NaKNbO3. Mat Res Bull 10, 335340.Google Scholar
Malic, B., Jenko, D., Bernard, J., Cilensek, J., & Kosec, M. (2003). Synthesis and sintering of (K,Na)NbO3 based ceramics. In Solid State Chemistry of Inorganic Materials IV, Alario-Franco, M.A., Greenblatt, M., Rohrer, G. & Whittingham, M.S. (Eds.), vol. 755, pp. 8388. Warrendale, PA: Materials Research Society.
Malic, B., Bernard, J., Holc, J., & Kosec, M. (2005a). Strontium doped K0.5Na0.5NbO3 based piezoceramics. Ferroelectrics 314, 149156.Google Scholar
Malic, B., Bernard, J., Holc, J., Jenko, D., & Kosec, M. (2005b). Alkaline-earth doping in (K,Na)NbO3 based piezoceramics. J Europ Ceram Soc 25, 27072711.Google Scholar
Okuwada, K., Imai, M., & Kakuno, K. (1989). Preparation of Pb(Mg1/3Nb2/3)O3 thin film by sol-gel method. Jpn J Appl Phys 28 (7), L1271L1273.Google Scholar
Okuwada, K., Nakamura, S., Imai, M., & Kakuno, K. (1991). High-resolution electron microscopy on epitaxial Pb(Mg1/3Nb2/3)O3 film prepared by sol-gel method. Jpn J Appl Phys 30 (6A), L1052L1055.Google Scholar
Powel, B.R. (1971). Processing of sodium-potassium niobate ceramics, M.Sc. Thesis. Berkeley: University of California.
Samardžija, Z., Bernik, S., Marinenko, R.B., Malič, B., & Čeh, M. (2004). An EPMA study of KNbO3 and NaNbO3 single crystals—Potential reference materials for quantitative microanalysis. Mikrochim Acta 145 (1–4), 203208.Google Scholar
Sano, T., Saylor, D.M., & Rohrer, G.S. (2003). Surface energy anisotropy of SrTiO3 at 1400°C in air. J Am Ceram Soc 86 (11), 19331939.Google Scholar
Sata, T. (1992). Vaporization rates from sintered bodies and single crystals of NaCl in flowing air. J Mat Sci 27 (11), 29462951.Google Scholar
Sata, T. (1994). Expansion during sintering of NaCl powders. Ceram Int 20, 3947.Google Scholar
Stannek, W. (1970). Characterization of sintering phenomena of Na0.5K0.5NbO3, M.Sc. Thesis. Berkeley: University of California.
Tani, T., Xu, Z., & Payne, D.A. (1993). Preferred orientations for sol-gel derived PLZT thin layers. In Mat. Res. Soc. Symp. Proc.: Ferroelectrics thin films III, Myers, E.R., Tuttle, B., Desu, S.B. & Larsen, P.K. (Eds.), vol. 310, pp. 269274. Pittsburgh: Materials Research Society.
Tran-Huu-Hue, L.P., Feuillard, G., Loyau, V., Ringgaard, E., & Lethiecq, M. (2003). Nonlinear behaviour of piezoelectric materials with graded electromechanical properties. In World Congress on Ultrasonics 2003 Proceedings, Paris, September 7–9, 2003, pp. 543546.