Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T02:22:03.743Z Has data issue: false hasContentIssue false

Electron Beam-Induced Radiation Damage: The Bubbling Response in Amorphous Dried Sodium Phosphate Buffer

Published online by Cambridge University Press:  07 April 2010

William H. Massover
Affiliation:
Department of Biological Sciences, Rutgers University–Newark, Newark, NJ 07102-1811, USA
Get access

Abstract

Irradiation of an amorphous layer of dried sodium phosphate buffer (pH = 7.0) by transmission electron microscopy (100–120 kV) causes rapid formation of numerous small spherical bubbles [10–100 Å (= 1–10 nm)] containing an unknown gas. Bubbling is detected even with the first low-dose exposure. In a thin layer (ca. 100–150 Å), bubbling typically goes through nucleation, growth, possible fusion, and end-state, after which further changes are not apparent; co-irradiated adjacent areas having a slightly smaller thickness never develop bubbles. In moderately thicker regions (ca. over 200 Å), there is no end-state. Instead, a complex sequence of microstructural changes is elicited during continued intermittent high-dose irradiation: nucleation, growth, early simple fusions, a second round of extensive multiple fusions, general reduction of matrix thickness (producing flattening and expansion of larger bubbles, occasional bubble fission, and formation of very large irregularly-shaped bubbles by a third round of compound fusion events), and slow shrinkage of all bubbles. The ongoing lighter appearance of bubble lumens, maintenance of their rounded shape, and extensive changes in size and form indicate that gas content continues throughout their surprisingly long lifetime; the thin dense boundary layer surrounding all bubbles is proposed to be the main mechanism for their long lifetime.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bae, I-T., Jiang, W., Wang, C., Weber, W.J. & Zhang, Y. (2009). Thermal evolution of microstructure in ion-irradiated GaN. J Appl Phys 105, 083514-1083514-7.CrossRefGoogle Scholar
Chen, S., Seidel, M.T. & Zewail, A.H. (2005). Atomic-scale dynamical structures of fatty acid bilayers observed by ultrafast electron crystallography. Proc Natl Acad Sci USA 102, 88548859.Google Scholar
Chiu, W., Baker, M.L., Jiang, N., Dougherty, M. & Schmid, M. (2005). Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13, 363372.CrossRefGoogle ScholarPubMed
Chiu, W. & Rixon, F.J. (2002). High resolution structural studies of complex icosahedral viruses: A brief overview. Virus Res 82, 917.Google Scholar
Comolli, L.R. & Downing, K.H. (2005). Dose tolerance at helium and nitrogen temperatures for whole cell electron tomography. J Struct Biol 152, 149156.CrossRefGoogle ScholarPubMed
Dhaka, R.S., Gururaj, K., Abhaya, S., Amarendra, G., Amirthapandian, S., Panigrahi, B.K., Nair, K.G.M., Lalla, N.P. & Barman, S.R. (2009). Depth-resolved positron annihilation studies of argon nanobubbles in aluminum. J Appl Phys 105, 054304-1054304-5.Google Scholar
Donnelly, S.E. & Rossouw, C.J. (1985). Lattice images of solid xenon precipitates in aluminum at room temperature. Science 230, 12721273.Google Scholar
Dubinko, V.I., Turkin, A.A., Abyzov, A.S., Sugonyako, A.V., Vainshtein, D.I. & Den Hartog, H.W. (2005). Nucleation and growth of sodium colloids in NaCl under irradiation: Theory and experiment. Phys Stat Solidi C-2, 438443.Google Scholar
Dubinko, V.I., Turkin, A.A., Vainshtein, D.I. & Den Hartog, H.W. (1999). A new mechanism for radiation damage processes in alkali halides. J Appl Phys 86, 59575960.Google Scholar
Dubochet, J., Adrian, M., Chang, J-J., Homo, J-C., Lepault, J., McDowall, A.W. & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21, 129228.Google Scholar
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.CrossRefGoogle ScholarPubMed
Egerton, R.F., Wang, F. & Crozier, P.A. (2006). Beam-induced damage to thin specimens in an intense electron probe. Microsc Microanal 12, 6571.Google Scholar
Frank, J. (2002). Single-particle imaging by cryo-electron microscopy. Ann Rev Biophys Biomol Struct 31, 303319.Google Scholar
Glaeser, R.M. (1999). Review: Electron crystallography: Present excitement, a nod to the past, anticipating the future. J Struct Biol 128, 314.Google Scholar
Gonen, T., Cheng, Y., Sliz, P., Hiroaki, Y., Fujiyoshi, Y., Harrison, S.C. & Walz, T. (2005). Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438, 633638.Google Scholar
Goodhew, P.J. & Tyler, S.K. (1981). Helium bubble behavior in b.c.c. metals below 0.65Tm. Proc R Soc Lond A377, 151184.Google Scholar
Heide, H.-G. & Zeitler, E. (1985). The physical behavior of solid water at low temperatures and the embedding of electron microscopical specimens. Ultramicrosc 16, 151160.CrossRefGoogle Scholar
Henderson, R. (1995). The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28, 171193.Google Scholar
Henderson, R. (2004). Realizing the potential of electron cryo-microscopy. Q Rev Biophys 37, 313.CrossRefGoogle ScholarPubMed
Jiang, N., Qiu, J., Ellison, A. & Silcox, J. (2003). Fundamentals of high energy electron-irradiation-induced modifications of silicate glasses. Phys Rev B 68, 064207-1064207-11.CrossRefGoogle Scholar
Jiang, N. & Silcox, J. (2002). Electron irradiation induced phase decomposition in alkaline earth multi-component oxide glass. J Appl Phys 92, 23102316.CrossRefGoogle Scholar
Kisielowski, C., Freitag, B., Bischoff, M., Van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., Van Der Stam, M., Von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Muller, H., Hartel, P., Kanbius, B., Miller, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A., Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Emi, R., Stach, E.A., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14, 469477.Google Scholar
Leapman, R.D. & Sun, S. (1995). Cryo-electron energy loss spectroscopy. Ultramicroscopy 59, 7179.CrossRefGoogle ScholarPubMed
Lentzen, M. (2006). Progress in aberration-corrected high-resolution transmission electron microscopy using hardware aberration correction. Microsc Microanal 12, 191205.CrossRefGoogle ScholarPubMed
Loo, J.S.C., Pooi, C. & Boey, F.Y.C. (2005). Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam irradiation. Biomat 26, 13591367.Google Scholar
Ludtke, S.J., Baker, M.L., Chen, D-H., Song, J-L., Chuang, D.T. & Chiu, W. (2008). De novo backbone trace of GroEL from single particle electron cryomicroscopy. Structure 16, 441448.Google Scholar
Massover, W.H. (2006a). Bubbling in light atom salts: A new method for direct visualization of electron beam-induced radiation damage. Microsc Microanal 12(S2), 390CD391CD.Google Scholar
Massover, W.H. (2006b). A new method for directly evaluating protective additives acting against electron beam-induced radiation damage. Proceedings of 16th International Microscopy Congress, Sapporo, Japan, I, p. 493. Tokyo: Japanese Microscopy Society.Google Scholar
Massover, W.H. (2007). Radiation damage to protein specimens from electron beam imaging and diffraction: A mini-review of anti-damage approaches, with special reference to synchrotron X-ray crystallography. J Synchrotron Rad 14, 116127.Google Scholar
Massover, W.H. (2008). On the experimental use of light metal salts for negative staining. Microsc Microanal 14, 126137.Google Scholar
Massover, W.H. (2009). Are electron irradiation-induced bubbles in amorphous sodium phosphate buffer only transient or can they have a long lifetime? Microsc Microanal 15(S2), 1362CD1363CD.Google Scholar
Meyer, J.C., Girit, C.O., Crommie, M.F. & Zettl, A. (2008). Imaging and dynamics of light atoms and molecules on graphene. Nature 454, 319322.Google Scholar
Ollier, N., Rizza, G., Boizot, B. & Petite, G. (2006). Effects of temperature and flux in oxygen bubble formation in Li borosilicate glass under electron beam irradiation. J Appl Phys 99, 073511-1073511-6.Google Scholar
Pennycook, S.J., Varela, M., Hetherington, C.J.D. & Kirkland, A.I. (2006). Materials advances through aberration-corrected electron microscopy. MRS Bull 31, 3643.Google Scholar
Potapov, P.L., Verbeeck, J., Schattschneider, P., Lichte, H. & Van Dyck, D. (2007). Inelastic electron holography as a variant of the Feynman thought experiment. Ultramicroscopy 107, 559567.Google Scholar
Reimer, L. & Kohl, H. (2008). Specimen damage by transmission electron irradiation. In Electron Microscopy. Physics of Image Formation, 5th Ed., Chap. 10, pp. 456487. Berlin: Springer-Verlag.Google Scholar
Ruan, C-Y., Murooka, Y., Raman, R.K., Mordick, R.A., Worhatch, R.J. & Pell, A. (2009). The development and application of ultrafast electron nanocrystallography. Microsc Microanal 15, 323337.CrossRefGoogle ScholarPubMed
Sato, K., Konno, T.J. & Hirotsu, Y. (2009). Atomic structure imaging of L10-type FePd nanoparticles by spherical aberration corrected high-resolution electron microscopy. J Appl Phys 105, 034308-1034308-5.Google Scholar
Smith, D.J. (2008a). Development of aberration-corrected electron microscopy. Microsc Microanal 14, 215.Google Scholar
Smith, D.J. (2008b). Progress and perspectives on atomic-resolution electron microscopy. Ultramicroscopy 108, 159166.Google Scholar
Smith, D.J. (2008c). Ultimate resolution in the electron microscope. Mater Today 11(S1), 3038.Google Scholar
Subramaniam, S. & Milne, J.L.S. (2004). Three-dimensional electron microscopy at molecular resolution. Ann Rev Biophys Biomol Struct 33, 141155.CrossRefGoogle ScholarPubMed
Sun, K., Wang, M., Ewing, R.C. & Weber, W.J. (2005). Effects of electron irradiation in nuclear waste glasses. Phil Mag 85, 597608.CrossRefGoogle Scholar
Taheri, M.I., Browning, N.D. & Lewellin, J. (2009). Introduction: Symposium on ultrafast electron microscopy and ultrafast science. Microsc Microanal 15, 271.Google Scholar
Trinkaus, H. & Singh, B.N. (2003). Helium accumulation in metals during irradiation—Where do we stand? J Nucl Mat 323, 229242.Google Scholar
Vainshtein, D.I., Altena, C. & Den Hartog, H.W. (1997). Evidence of void lattice formation in heavily irradiated NaCl. Mat Sci Forum 239-241, 607610.Google Scholar
Vom Felde, A., Fink, J., Müller-Heinzerling, T., Pfülger, J., Scheerer, B., Linker, G. & Kaletta, D. (1984). Pressure of neon, argon, and xenon bubbles in aluminum. Phys Rev Lett 53, 922925.Google Scholar
Zewail, A.H. (2006). 4D ultrafast electron diffraction, crystallography, and microscopy. Ann Rev Phys Chem 57, 65103.Google Scholar
Zhang, X., Settembre, E., Xu, C., Dormitzer, P.R., Bellamy, R. & Grigorieff, N. (2008). Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Nat Acad Sci USA 105, 18671872.CrossRefGoogle ScholarPubMed