Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T08:05:17.007Z Has data issue: false hasContentIssue false

Electron Backscatter Diffraction in Conservation Science: Phase Identification of Pigments in Paint Layers

Published online by Cambridge University Press:  13 May 2013

A. Gambirasi*
Affiliation:
Istituto di Chimica Inorganica e delle Superfici, Consiglio Nazionale delle Ricerche, Corso Stati Uniti 4, 35127 Padova, Italy Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155/b, 30172 Venezia–Mestre, Italy
L. Peruzzo
Affiliation:
Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche, via G. Gradenigo 6, 35131 Padova, Italy
S. Bianchin
Affiliation:
Istituto di Chimica Inorganica e delle Superfici, Consiglio Nazionale delle Ricerche, Corso Stati Uniti 4, 35127 Padova, Italy
M. Favaro
Affiliation:
Istituto di Chimica Inorganica e delle Superfici, Consiglio Nazionale delle Ricerche, Corso Stati Uniti 4, 35127 Padova, Italy
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Electron backscatter diffraction (EBSD) was used in Conservation Science for characterization of ancient materials collected from works of art. The results demonstrate the feasibility of EBSD analysis on heterogeneous matrices as very small samples of paint layers collected from paintings. Two reference pigments were selected from those used by artists to investigate the relationship existing between EBSD pattern quality and properties of the investigated material (i.e., average atomic number, density, and Mohs hardness). The technique was also tested to investigate the pigment phases on two real samples collected from Romanino's Santa Giustina altarpiece, an oil on wood painting dated 1514 (Civic Museum, Padova, Italy). Results show for the first time the acquisition of EBSD patterns from painting samples mounted in resin, i.e., painting cross sections, opening a new powerful tool to elucidate the pigment phases avoiding large sampling on works of arts and to further study the complex mechanisms of pigment deterioration.

Type
EBSD Special Section
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreotti, A., Bonaduce, I., Colombini, M.P., Gautier, G., Modugno, F. & Ribechini, E. (2006). Combined GC/MS analytical procedure for the characterization of glycerolipid, waxy, resinous, and proteinaceous materials in a unique paint microsample. Anal Chem 78, 44904500.CrossRefGoogle Scholar
Auvray, P. & Genet, F. (1973). Affinement de la structure cristalline du cinabre a-HgS. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie 96, 218219.Google Scholar
Baldissini Molli, G. (1985). La pala di Romanino dal Coro vecchio di S. Giustina alla Pinacoteca di Padova: Qualche riflessione sulle polemiche di un trasferimento contestato. In Bollettino del Museo Civico di Padova, annata LXXIV, pp. 6790. Padova, Italy: Società Cooperativa Tipografica.Google Scholar
Barnett, M.R., Sullivan, A. & Balasubramaniam, R. (2009). Electron backscatter diffraction analysis of ancient wootz steel blade from Central India. Mater Charact 60, 252260.Google Scholar
Belokoneva, E.L., Gubina, Y.K. & Forsyth, J.B. (2001). The charge density distribution and antiferromagnetic properties of azurite Cu3[CO3]2(OH)2 . Phys Chem Miner 28, 498507.CrossRefGoogle Scholar
Deal, A., Tao, X. & Eades, A. (2005). EBSD geometry in the SEM: Simulation and representation. Surf Interf Anal 37, 10171020.Google Scholar
Favaro, M., Bianchin, S. & Vigato, P.A. (2012). Indagini chimico-fisiche per la caratterizzazione dei materiali impiegati nell'esecuzione della Pala di Santa Giustina. In La Pala di Santa Giustina e il suo restauro, Gastaldi, E. (Ed.), pp. 5968. Padova, Italy: Esedra editrice.Google Scholar
Giumlia-Mair, A., Albertson, C., Boschian, G., Giachi, G., Iacomussi, P., Pallecchi, P., Rossi, G., Shugar, A.N. & Stock, S. (2010). Surface characterisation techniques in the study and conservation of art and archaeological artefacts: A review. Mater Technol 25, 245561.Google Scholar
Guo, J., Amira, S., Gougeon, P. & Chen, X-G. (2011). Effect of the surface preparation techniques on the EBSD analysis of a friction stir welded AA1100-B4C metal matrix composite. Mater Charact 62, 865877.CrossRefGoogle Scholar
Harland, C.J., Klein, J.H., Akheter, P. & Venables, J.A. (1978). Electron back-scattering patterns in a field emission gun scanning electron microscope. Electron Microsc 1, 564565.Google Scholar
Katrakova, D. & Mücklich, F. (2002). Specimen preparation for electron backscatter diffraction (EBSD)—Part II: Ceramics. Prakt Metallogr 39, 644662.Google Scholar
Mapelli, C., Nicodemi, W. & Riva, R.F. (2007). Microstructural investigation on a medieval sword produced in the 12th century A.D. ISIJ Int 47, 10501057.Google Scholar
Nowell, M.M. & Wright, S.I. (2004). Phase differentiation via combined EBSD and XEDS. J Microsc 213, 296305.Google Scholar
Peruzzo, L., Fenzi, F. & Vigato, P.A. (2011). Electron backscatter diffraction (EBSD): A new technique for the identification of pigments and raw materials in historic glasses and ceramics. Archaeometry 53, 178193.Google Scholar
Peruzzo, L., Ferro, D., Virgili, V., Calliari, I. & Buson, S. (2012). The contribution of SEM-EBSD analysis to a microstructural interpretation of the elasticity of ancient fibulae springs. In Historical Technology, Materials and Conservation: SEM and Microanalysis, Meeks, N., Cartwright, C., Meek, A. & Mongiatti, A. (Eds.), pp. 185187. London: Archetype Publications.Google Scholar
Plester, J. (1956). Cross-sections and chemical analysis of paint samples. Stud Conserv 2, 110157.Google Scholar
Sartori, A. (1970). Regesto di S. Giustina. In La Basilica di S. Giustina in Padova. Arte e Storia, Zovatto, P.L. (Ed.), p. 453. Padova, Italy: Grifone.Google Scholar
Small, J.A. & Michael, J.R. (2001). Phase identification of individual crystalline particles by electron backscatter diffraction. J Microsc 201, 5969.Google Scholar
Small, J.A., Michael, J.R. & Bright, D.S. (2002). Improving the quality of the electron backscatter diffraction (EBSD) patterns from nanoparticles. J Microsc 206, 170178.Google Scholar
Wanhill, R.J.H. (2005). Embrittlement of ancient silver. J Failure Anal Prevent 5, 4154.CrossRefGoogle Scholar
Wilkinson, A.J. & Hirsch, P.B. (1997). Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 28, 279308.Google Scholar