Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T06:32:55.309Z Has data issue: false hasContentIssue false

Effect of Cu on Nanoscale Precipitation Evolution and Mechanical Properties of a Fe–NiAl Alloy

Published online by Cambridge University Press:  21 March 2017

Qin Shen
Affiliation:
Key Laboratory for Microstructures, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People’s Republic of China
Hao Chen
Affiliation:
Key Laboratory for Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
Wenqing Liu*
Affiliation:
Key Laboratory for Microstructures, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People’s Republic of China
*
*Corresponding author. [email protected]
Get access

Abstract

The microstructural evolution of precipitation in two model alloys, Fe–NiAl and Fe–NiAl–Cu, was investigated during aging at 500°C for different times using atom probe tomography (APT). The APT results reveal that the addition of Cu effectively increases the number density of NiAl precipitates. This is attributed to Cu promoting the nucleation of NiAl particles by increasing the chemical driving force and decreasing the interfacial energy. The NiAl precipitates of the Fe–NiAl–Cu alloy grow and coarsen at a slower rate than that of the Fe–NiAl alloy, mainly due to the slower diffusion rate of the Cu atoms. The mechanical properties of the two alloys were characterized by Vickers hardness and tension tests. It was found that the addition of Cu results in the formation of core–shell precipitates with a Cu-rich core and a NiAl shell, leading to a dramatic improvement of peak hardness and strength. The effect of Cu on precipitation strengthening is discussed in terms of chemical strength and coherency strength.

Type
Materials Science (Metals)
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, H.I. & Legoues, F.K. (1992). An assessment of studies on homogeneous diffusional nucleation kinetics in binary metallic alloys. Metall Trans A 23, 19151945.CrossRefGoogle Scholar
Argon, A.S. (2008). Strengthening Mechanisms in Crystal Plasticity. Oxford, UK: Oxford University Press.Google Scholar
Bei, H., Shim, S., Pharr, G.M. & George, E.P. (2008). Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater 56, 47624770.Google Scholar
Gagliano, M.S. & Fine, M.E. (2004). Characterization of the nucleation and growth behavior of copper precipitates in low-carbon steels. Metall Mater Trans A 35, 23232329.Google Scholar
Goodman, S., Brenner, S. & Low, J. R. (1973). An FIM-atom probe study of the precipitation of copper from iron-1.4 At. Pct copper. Part I: Field-ion microscopy. Metall Mater Trans 4, 23632369.Google Scholar
Guo, Z., Sha, W. & Vaumousse, D. (2003). Microstructural evolution in a PH13-8 stainless steel after ageing. Acta Mater 51, 101116.Google Scholar
Hattestrand, M., Nilsson, J., Stiller, K. & Liu, P. (2004). Precipitation hardening in a 12% Cr–9% Ni–4% Mo–2% Cu stainless steel. Acta Mater 52, 10231037.Google Scholar
Hayashi, T., Sarosi, P.M., Schneibel, J.H. & Mills, M.J. (2008). Creep response and deformation processes in nanocluster-strengthened ferritic steels. Acta Mater 56, 14071416.Google Scholar
Hellman, O.C., Rusing, J. & Seidman, D.N. (2003). Efficient sampling for three-dimensional atom probe microscopy data. Ultramicroscopy 95, 199205.CrossRefGoogle ScholarPubMed
Hellman, O.C., Vandenbrouche, J.A., Rusing, J., Isheim, D. & Seidman, D.N. (2000). Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6, 437444.CrossRefGoogle ScholarPubMed
Hochanadel, P.W., Robino, C.V., Edwards, G.R. & Cieslak, M.J. (1994). Heat treatment of investment cast PH 13-8 Mo stainless steel: Part I. Mechanical properties and microstructure. Metall Mater Trans A 25, 789798.Google Scholar
Horing, S., Wanderka, N. & Banhart, J. (2009). The influence of Cu addition on precipitation in Fe-Cr-Ni-Al-(Cu) model alloys. Ultramicroscopy 109, 574579.CrossRefGoogle ScholarPubMed
Hornbogen, E. & Glenn, R.C. (1960). A metallographic study of precipitation of copper from alpha iron. Trans Metall Soc AIME 218, 10641070.Google Scholar
Huang, S., Gao, Y., An, K., Zheng, L.L., Wu, W., Teng, Z. & Liaw, P.K. (2015). Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures. Acta Mater 83, 137148.Google Scholar
Jiao, Z.B., Luan, J.H., Miller, M.K., Yua, C.Y. & Liu, C.T. (2015). Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles. Acta Mater 84, 283291.CrossRefGoogle Scholar
Kapoor, M., Isheim, D., Ghosh, G., Vaynman, S., Fine, M.E. & Chung, Y.W. (2014). Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel. Acta Mater 73, 5674.Google Scholar
Kolli, R.P. & Seidman, D.N. (2007). Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu Steel. Microsc Microanal 13, 272284.Google Scholar
Kolli, R.P. & Seidman, D.N. (2008). The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel. Acta Mater 56, 20732088.CrossRefGoogle Scholar
Kumar, K.S., Mannan, S.K. & Viswanadham, R.K. (1992). Fracture toughness of NiAl and NiAl-based composites. Acta Metall Mater 40, 12011222.CrossRefGoogle Scholar
Maruyama, N., Sugiyama, M., Hara, T. & Tamehiro, H. (1999). Precipitation and phase transformation of copper particles in low alloy ferritic and martensitic steels. Mater Trans JIM 40, 268277.Google Scholar
Miller, M.K. (2000 a). Atom probe tomography: Analysis at the atomic level. In The Art of Specimen Preparation, pp. 2836. New York, NY: Kluwer Academic/Plenum Publishers.Google Scholar
Miller, M.K. (2000 b). Atom probe tomography: Analysis at the atomic level. In Data Representations and Analysis, pp. 158160. New York, NY: Kluwer Academic/Plenum Publishers.Google Scholar
Miller, M.K. & Kenik, E.A. (2004). Atom probe tomography: A technique for nanoscale characterization. Microsc Microanal 10, 336341.Google Scholar
Othen, P.J., Jenkins, M.L. & Smith, G.D.W. (1994). High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe. Philos Mag A 70, 124.Google Scholar
Ping, D.H., Ohnuma, M., Hirakawa, Y., Kadoya, Y. & Hono, K. (2005). Microstructural evolution in 13Cr–8Ni–2.5Mo–2Al martensitic precipitation-hardened stainless steel. Mater Sci Eng A 394, 285295.CrossRefGoogle Scholar
Schnitzer, R., Schober, M., Zinner, S. & Leitner, H. (2010). Effect of Cu on the evolution of precipitation in an Fe-Cr-Ni-Al-Ti maraging steel. Acta Mater 58, 37333741.Google Scholar
Seetharaman, V., Sundararaman, M. & Krishnan, R. (1981). Precipitation hardening in a PH 13-8 Mo stainless steel. Mater Sci Eng 47, 111.CrossRefGoogle Scholar
Taillard, R. & Pineau, A. (1982). The precipitation of the intermetallic compound NiAl in Fe-19wt.% Cr alloys. Mater Sci Eng 54, 209219.Google Scholar
Trotter, G., Rayner, G., Baker, I. & Munroe, P.R. (2014). Accelerated precipitation in the AFA stainless steel Fe-20 Cr-30 Ni-2 Nb-5 Al via cold working. Intermetallics 53, 120128.Google Scholar
Vaumousse, D., Cerzo, A. & Warren, P.J. (2003). A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215221.Google Scholar
Wang, X.J., Sha, G., Shen, Q. & Liu, W.Q. (2015). Age-hardening effect and formation of nanoscale composite precipitates in a NiAlMnCu-containing steel. Mater Sci Eng A 627, 340347.CrossRefGoogle Scholar
Wen, Y.R., Hirata, A., Zhang, Z.W., Fujita, T., Liu, C.T., Jiang, J.H. & Chen, M.W. (2013). Microstructure characterization of Cu-rich nanoprecipitates in a Fe-2.5 Cu-1.5 Mn-4.0 Ni-1.0 Al multicomponent ferritic alloy. Acta Mater 61, 21332147.CrossRefGoogle Scholar
Yen, H.W., Chen, P.Y., Huang, C.Y. & Yang, J.R. (2011). Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel. Acta Mater 59, 62646274.Google Scholar
Zhang, Z.W., Liu, C.T., Miller, M.K., Wang, X.L., Yuren, W., Fujita, T., Hirata, A., Chen, M.W., Chen, G. & Chin, B.A. (2013). A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Sci Rep 3, 13271332.Google Scholar