Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T18:19:13.501Z Has data issue: false hasContentIssue false

Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy

Published online by Cambridge University Press:  04 July 2014

Raymond R. Unocic*
Affiliation:
Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, USA
Xiao-Guang Sun
Affiliation:
Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, TN 37831, USA
Robert L. Sacci
Affiliation:
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA
Leslie A. Adamczyk
Affiliation:
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA
Daan Hein Alsem
Affiliation:
Hummingbird Scientific, Lacey, WA 98516, USA
Sheng Dai
Affiliation:
Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, TN 37831, USA
Nancy J. Dudney
Affiliation:
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA
Karren L. More
Affiliation:
Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Complex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.

Type
FEMMS Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abellan, P., Mehdi, B.L., Parent, L.R., Gu, M., Park, C., Xu, W., Zhang, Y., Arslan, I., Zhang, J.-G., Wang, C.M., Evans, J.E. & Browning, N.D. (2014). Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett 14(3), 12931299.Google Scholar
Alliata, D., Kotz, R., Novak, P. & Siegenthaler, H. (2000). Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes. Electrochem Commun 2, 436440.CrossRefGoogle Scholar
Armand, M. & Tarascon, J.-M. (2008). Building better batteries. Nature 451, 652657.Google Scholar
Aurbach, D. (2003). Electrode-solution interactions in Li-ion batteries: A short summary and new insights. J Power Sources 119, 497503.Google Scholar
Aurbach, D. & Ein-Eli, Y. (1995). The study of Li-graphite intercalation processes in several electrolyte systems using in situ X-ray diffraction. J Electrochem Soc 142(6), 17461752.CrossRefGoogle Scholar
Aurbach, D., Ein-Eli, Y., Chusid, O., Carmeli, Y., Babai, M. & Yamin, H. (1994 a). The correlation between the surface-chemistry and the performance of Li-carbon intercalation anodes for rechargeable rocking-chair type batteries. J Electrochem Soc 141(3), 603611.CrossRefGoogle Scholar
Aurbach, D., Markovsky, B., Weissman, I., Levi, E. & Ein-Eli, Y. (1999). On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim Acta 45(1–2), 6786.Google Scholar
Aurbach, D., Weissman, I., Zaban, A. & Chusid, O. (1994 b). Correlation between surface chemistry, morphology, cycling efficiency, and interfacial properties of Li electrodes in solutions containing different salts. Electrochem Acta 39(1), 5171.Google Scholar
Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. (2002). A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405416.Google Scholar
Balbuena, P.B. & Wang, Y., Eds. (2004). Lithium-Ion Batteries: Solid-Electrolyte Interphase. London: Imperial College Press.CrossRefGoogle Scholar
Bar-Tow, D., Peled, E. & Burstein, L. (1999). A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries. J Electrochem Soc 146(3), 824832.CrossRefGoogle Scholar
Bridges, C.A., Sun, X.-G., Zhao, J., Paranthaman, M.P. & Dai, S. (2012). In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering. J Phys Chem C 116, 77017711.Google Scholar
Broussley, M., Biensem, P., Bonhomme, F., Blanchard, P., Herreyre, S., Nechev, K. & Staniewicz, R.J. (2005). Main aging mechanisms in Li ion batteries. J Power Sources 146(1–2), 9096.CrossRefGoogle Scholar
Chen, X., Noh, K.W., Wen, J.G. & Dillon, S.J. ( 2012). In situ electrochemical wet cell transmission electron microscopy characterization of solid-liquid interactions between Ni and aqueous NiCl2 . Acta Materialia 60(1), 192198.CrossRefGoogle Scholar
De Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci 106(7), 21592164.CrossRefGoogle ScholarPubMed
De Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6, 695704.CrossRefGoogle ScholarPubMed
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11(7), 28092813.CrossRefGoogle ScholarPubMed
Fong, R., Sacken, U.V. & Dahn, J.R. (1990). Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc. 137, 20092013.Google Scholar
Goodenough, J.B. & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chem Mater Rev 22, 587603.Google Scholar
Gu, M., Parent, L.R., Mehdi, B.L., Unocic, R.R., McDowell, M.T., Sacci, R.L., Xu, W., Connel, J.G., Xu, P., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Lauhon, L.J., Arslan, I., Zhang, J.G., Liu, J., Cui, Y., Browning, N.D. & Wang, C.M. (2013). Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett 13, 61066112.CrossRefGoogle ScholarPubMed
Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H., Qi, L., Kushima, A. & Li, J. (2010). In situ observation of the electrochemical lithiation of a single SnO nanowire electrode. Science 330, 15151520.Google Scholar
Markovsky, B., Rodkin, A., Cohen, Y.S., Palchik, O., Aurbach, D., Kim, H.-J. & Schmidt, M. (2003). The study of capacity fading processes of Li-ion batteries: Major factors that play a role. J Power Sources 119–121, 504510.Google Scholar
Novak, P., Joho, F., Lanz, M., Rykart, B., Panitz, J.-C., Alliata, D., Kotz, R. & Hass, O. (2001). The complex electrochemistry of graphite electrodes in lithium-ion batteries. J Power Sources 97–98, 3946.Google Scholar
Owejan, J.E., Owejan, J.P., Decaluwe, S.C. & Dura, J.A. (2012). Solid electrolyte interphase in Li-ion batteries: Evolving structures measured in situ by neutron reflectometry. Chem Mater 24(11), 21332140.Google Scholar
Peled, E. (1979). The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 126(12), 20472051.CrossRefGoogle Scholar
Peled, E., Golodnitsky, D. & Ardel, G. (1997). Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 144(8), L208L210.CrossRefGoogle Scholar
Radisic, A., Philippe, M., Vereecken, P.M., Hannon, J.B., Searson, P.C. & Ross, F.M. (2006). Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6(2), 238242.CrossRefGoogle ScholarPubMed
Sacci, R.L., Dudney, N.J., More, K.L., Parent, L.R., Arslan, I., Browning, N.D. & Unocic, R.R. (2014). Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem Commun 50, 21042107.Google Scholar
Tarascon, J.-M. & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature 414, 359367.Google Scholar
Tasaki, K., Goldberg, A., Lian, J.-J., Walker, M., Timmons, A. & Harris, S.J. (2009). Solubility of lithium salts on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc 156(12), A1019A1027.Google Scholar
Verma, P., Maire, P. & Novak, P. (2010). A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55, 63326341.Google Scholar
Wang, C.M., Xu, W., Liu, J., Zhang, J.G., Saraf, L.V., Arey, B.W., Choi, D., Yang, Z.G., Xiao, J., Thevuthasan, S. & Baer, D.R. (2011 a). In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett 11, 18741880.Google Scholar
Wang, F., Graetz, J., Moreno, M.S., Ma, C., Wi, L., Volkov, V. & Zhu, Y. (2011 b). Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy. ACS Nano 5(2), 11901197.Google Scholar
White, E.R., Singer, S.B., Augustyn, V., Hubbard, W.A., Mecklenburg, M., Dunn, B. & Regan, B.C. (2012). In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6(7), 63086317.Google Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2, 532536.CrossRefGoogle ScholarPubMed
Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104, 43034417.Google Scholar
Zheng, H., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009). Nanocrystal growth trajectories observation of single colloidal platinum. Science 324, 13091312.CrossRefGoogle ScholarPubMed
Zeng, Z., Liang, W.-I., Liao, H.-G., Xin, H.L., Chu, Y.-H. & Zheng, H. (2014). Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in Situ TEM. Nano Lett 14(4), 17451750.CrossRefGoogle ScholarPubMed

Unocic Supplementary Material

Movie 1

Download Unocic Supplementary Material(Video)
Video 17.5 MB