Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T09:53:33.037Z Has data issue: false hasContentIssue false

Development of an Integrated Thermocouple for the Accurate Sample Temperature Measurement During High Temperature Environmental Scanning Electron Microscopy (HT-ESEM) Experiments

Published online by Cambridge University Press:  01 April 2015

Renaud Podor*
Affiliation:
Institut de Chimie Séparative de Marcoule, UMR 5257 CEA-CNRS-UM2-ENSCM Site de Marcoule, Bat 426, BP 17171, F-30207 Bagnols sur Cèze cedex, France
Damien Pailhon
Affiliation:
Institut de Chimie Séparative de Marcoule, UMR 5257 CEA-CNRS-UM2-ENSCM Site de Marcoule, Bat 426, BP 17171, F-30207 Bagnols sur Cèze cedex, France
Johann Ravaux
Affiliation:
Institut de Chimie Séparative de Marcoule, UMR 5257 CEA-CNRS-UM2-ENSCM Site de Marcoule, Bat 426, BP 17171, F-30207 Bagnols sur Cèze cedex, France
Henri-Pierre Brau
Affiliation:
Institut de Chimie Séparative de Marcoule, UMR 5257 CEA-CNRS-UM2-ENSCM Site de Marcoule, Bat 426, BP 17171, F-30207 Bagnols sur Cèze cedex, France
*
*Corresponding author. [email protected]
Get access

Abstract

We have developed two integrated thermocouple (TC) crucible systems that allow precise measurement of sample temperature when using a furnace associated with an environmental scanning electron microscope (ESEM). Sample temperatures measured with these systems are precise (±5°C) and reliable. The TC crucible systems allow working with solids and liquids (silicate melts or ionic liquids), independent of the gas composition and pressure. These sample holder designs will allow end users to perform experiments at high temperature in the ESEM chamber with high precision control of the sample temperature.

Type
Equipment Development
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bestmann, M., Piazolo, S., Spiers, C.J. & Prior, D.J. (2005). Microstructural evolution during initial stages of static recovery and recrystallization: New insights from in-situ heating experiments combined with electron backscatter diffraction analysis. J Struct Geol 27, 447457.Google Scholar
Boucetta, H., Podor, R., Schuller, S., Stievano, L., Ravaux, J., Carrier, X., Casale, S., Gossé, S. & Monteiro, A. (2012). Mechanism of RuO2 crystallization in simplified borosilicate containment glass: An original in situ ESEM approach. Inorg Chem 51, 34783489.Google Scholar
Clavier, N., Podor, R., Delière, L., Ravaux, J. & Dacheux, N. (2013). Combining in situ HT-ESEM observations and dilatometry: An original and fast way to the sintering map of ThO2 . Mater Chem Phys 137, 742749.Google Scholar
Coillot, D., Méar, F.O., Podor, R. & Montagne, L. (2010). Autonomic self-repairing glassy materials. Adv Funct Mater 20(24), 43714374.Google Scholar
Goodrich, T.W. & Lattimer, B.Y. (2012). Fire decomposition effects on sandwich composite materials. Composites A 43, 808813.Google Scholar
Gualtieri, A.F., Lassinantti Gualtieri, M. & Tonelli, M. (2008). In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product. J Hazard Mater 156, 260266.Google Scholar
Hingant, N., Clavier, N., Dacheux, N., Hubert, S., Barré, N., Podor, R. & Aranda, L. (2011). Preparation of morphology controlled Th1-xUxO2 sintered pellets from low-temperature precursors. Powder Technol 208, 454460.Google Scholar
Joly-Pottuz, L. (2010). Microscopie environnementale à haute température: de l’intérêt de l’approche in-situ en temps réel pour la compréhension des phénomènes de frittage et d’oxydation des films minces. Nancy, France: GN-MEBA.Google Scholar
Joly-Pottuz, L., Bogner, A., Lasalle, A., Malchere, A., Thollet, G. & Deville, S. (2011). Improvements for imaging ceramics sintering in situ in ESEM. J Microsc 244, 93100.Google Scholar
Jonsson, T., Folkeson, N., Svensson, J.-E., Johansson, L.-G. & Halvarssonavier, M. (2011). An ESEM in situ investigation of initial stages of the KCl induced high temperature corrosion of a Fe–2.25Cr–1Mo steel at 400°C. Corr Sci 53, 22332246.Google Scholar
Jonsson, T., Pujilaksono, B., Hallström, S., Ågren, J., Svensson, J.-E., Johansson, L.-G. & Halvarssonavier, M. (2009). An ESEM in situ investigation of the influence of H2O on iron oxidation at 500°C. Corr Sci 51, 19141924.Google Scholar
Klemensø, T., Appel, C.C. & Mogensen, M. (2006). In situ observations of microstructural changes in SOFC anodes during redox cycling. Electrochem Solid State Lett 9, A403A407.Google Scholar
Knowles, R.W. & Hardt, T.A. (1996). High temperature specimen stage and detector for an environmental scanning electron microscope. Patent No. EP1003200B1.Google Scholar
Maroni, V.A., Teplisky, M. & Rupich, M.W. (1999). An environmental scanning electron microscope study of the Ag/Bi-2223 composite conductor from 25 to 840°C. Physica C 313, 169174.Google Scholar
Podor, R., Clavier, N., Ravaux, J., Claparède, L. & Dacheux, N. (2012a). In situ HT-ESEM observation of CeO2 grain growth during sintering. J Am Ceram Soc 95, 36823690.Google Scholar
Podor, R., Clavier, N., Ravaux, J., Claparède, L., Dacheux, N. & Bernache-Assollant, D. (2012b). Dynamic aspects of cerium dioxide sintering: HT-ESEM study of grain growth and pore elimination. J Eur Ceram Soc 32, 353362.Google Scholar
Podor, R., Pailhon, D., Brau, H.P. & Ravaux, J. (2013). Sample holder with integrated TC. Patent No. WO2013011022, January 24.Google Scholar
Srinivasan, N.S. (2002). Dynamic study of changes in structure and morphology during the heating and sintering of iron powder. Powder Technol 124, 4044.Google Scholar
Wilson, B.A. & Case, D.E. (1997). In situ microscopy of crack healing in borosilicate glass. J Mater Sci 32, 31633175.Google Scholar

Podor supplementary material

Podor supplementary material 1

Download Podor supplementary material(Video)
Video 6.8 MB