Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-19T11:46:08.816Z Has data issue: false hasContentIssue false

Development and Evaluation of a Novel Topical Treatment for Acne with Azelaic Acid-Loaded Nanoparticles

Published online by Cambridge University Press:  15 May 2013

Catarina Pinto Reis
Affiliation:
Laboratory of Nanoscience and Biomedical Nanotechnology (LNBN), CBIOS, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
Ana Gomes*
Affiliation:
Laboratory of Nanoscience and Biomedical Nanotechnology (LNBN), CBIOS, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
Patrícia Rijo
Affiliation:
Laboratory of Pharmacology and Therapeutics (LPT), CBIOS, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
Sara Candeias
Affiliation:
Laboratory of Nanoscience and Biomedical Nanotechnology (LNBN), CBIOS, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
Pedro Pinto
Affiliation:
Experimental Dermatology Unit (UDE), CBIOS, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
Marina Baptista
Affiliation:
Laboratory of Pharmacology and Therapeutics (LPT), CBIOS, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
Nuno Martinho
Affiliation:
Laboratory of Nanoscience and Biomedical Nanotechnology (LNBN), CBIOS, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
Lia Ascensão
Affiliation:
Departamento de Biologia Vegetal, IBB, Centro de Biotecnologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Azelaic acid (AzA) is used in the treatment of acne. However, side effects and low compliance have been associated with several topical treatments with AzA. Nanotechnology presents a strategy that can overcome these problems. Polymeric nanoparticles can control drug release and targeting and reduce local drug toxicity. The aim of this study was to produce and evaluate an innovative topical treatment for acne with AzA-loaded poly-dl-lactide/glycolide copolymer nanoparticles. A soft white powder of nanoparticles was prepared. The mean size of loaded nanoparticles was <400 nm and zeta potential was negative. Spherical nanoparticles were observed by scanning electron microscopy. Encapsulation efficiency was around 80% and a strong interaction between the polymer and the drug was confirmed by differential scanning calorimetric analysis. In vitro drug release studies suggested a controlled and pulsatile release profile. System efficacy tests suggested similar results between the loaded nanoparticles and the nonencapsulated drug against the most common bacteria associated with acne. Cytotoxicity of AzA-loaded nanoparticles was concentration dependent, although not pronounced. The occluded patch test seemed to indicate that the formulation excipients were safe and thus AzA-loaded nanoparticles appear to be an efficient and safe treatment for acne.

Type
Portuguese Society for Microscopy
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amichai, B., Shemer, A. & Grunwald, M.H. (2006). Low-dose isotretinoin in the treatment of acne vulgaris. J Am Acad Dermatol 54(4), 644646.Google Scholar
Ates, O., Gürsoy, A., Altintas, H., Otük, G. & Birteksöz, S. (2003). Synthesis and antimicrobial activity of [2-[2-(N, N-disubstituted thiocarbamoyl-sulfanyl)-acylamino] thiazol-4-yl] acetic acid ethyl esters. Arch Pharm (Weinheim) 336(1), 3946.Google Scholar
Bojar, R., Holland, K. & Cunliffe, W. (1991). The in-vitro antimicrobial effects of azelaic acid upon Propionibacterium acnes strains P37. J Antimicrob Chemother 28(6), 843853.Google Scholar
Brüggemann, H., Lomholt, H.B. & Kilian, M. (2012). The flexible gene pool of Propionibacterium acnes . Mob Genet Elements 2(3), 145148.Google Scholar
Buzea, C., Pacheco, I.I. & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2(4), 1771.CrossRefGoogle ScholarPubMed
Casimiro, M.H., Leal, J.P., Gil, M.H. & Castro, C.A.N. (2005). Análise calorimétrica aplicada a polímeros biológicos. Parte I: Fundamentos teóricos. Bol–Soc Port Quím 98, 2936.Google Scholar
Charnock, C., Brudeli, B. & Klaveness, J. (2004). Evaluation of the antibacterial efficacy of diesters of azelaic acid. Eur J Pharm Sci 21(5), 589596.CrossRefGoogle ScholarPubMed
Chronnell, C.M., Ghali, L.R., Ali, R.S., Quinn, A.G., Holland, D.B., Bull, J.J., Cunliffe, W.J., McKay, I.A., Philpott, M.P. & Müller-Röver, S. (2001). Human beta defensin-1 and -2 expression in human pilosebaceous units: Upregulation in acne vulgaris lesions. J Invest Dermatol 117(5), 11201125.Google Scholar
Clinical and Laboratory Standards Institute Guidelines (CLSI) (2011). Performance Standards for Antimicrobial Susceptibility Testing: 20th Informational Supplement. CLSI document M100-S21. Wayne, PA: CLSI. Google Scholar
Ganceviciene, R., Bohm, M., Fimmel, S. & Zouboulis, C.C. (2009). The role of neuropeptides in the multifactorial pathogenesis of acne vulgaris. Dermato Endocrinol 1(3), 170176.CrossRefGoogle ScholarPubMed
Gollnick, H. (2003). Current concepts of the pathogenesis of acne: Implications for drug treatment. Drugs 63(15), 15791596.Google Scholar
Gollnick, H. & Schramm, M. (1998). Topical drug treatment in acne. Dermatology 196(1), 119125.CrossRefGoogle ScholarPubMed
Gollnick, H.P., Graupe, K. & Zaumseil, R.P. (2004). Azelaic acid 15% gel in the treatment of acne vulgaris. Combined results of two double-blind clinical comparative studies. J Dtsch Dermatol Ges 2(10), 841847.Google Scholar
Ibrahierm, A. & Mansour, M. (2002). Simultaneous determination of azelaic and benzoic acids in topical preparations by liquid chromatography. Chromatographia 7(55), 435437.Google Scholar
ICH Q2 (R1) Guidelines (2005). Validation of Analytical Procedures: Text and Methodology. Geneva, Switzerland: ICH. Google Scholar
Jih, M.H. & Kimyai-Asadi, A. (2007). Laser treatment of acne vulgaris. Semin Plast Surg 21(3), 167174.Google Scholar
Kilian, M., Scholz, C.F. & Lomholt, H.B. (2012). Multilocus sequence typing and phylogenetic analysis of Propionibacterium acnes . J Clin Microbiol 50(4), 11581165.CrossRefGoogle ScholarPubMed
Kinney, M.A., Yentzer, B.A., Fleischer, A.B. Jr. & Feldman, S.R. (2010). Trends in the treatment of acne vulgaris: Are measures being taken to avoid antimicrobial resistance? J Drugs Dermatol 9(5), 519524.Google Scholar
Knor, T., Meholjić-Fetahović, A. & Mehmedagić, A. (2011). Stratum corneum hydration and skin surface pH in patients with atopic dermatitis. Acta Dermatovenerol Croat 19(4), 242247.Google ScholarPubMed
Liu, C.H. & Huang, H.Y. (2012). Antimicrobial activity of curcumin-loaded myristic acid microemulsions against Staphylococcus epidermidis . Chem Pharm Bull 60(9), 11181124.Google Scholar
Mainardes, R., Palmira, M., Gremião, D. & Evangelista, R. (2006). Thermoanalytical study of praziquantel-loaded PLGA nanoparticles. Braz J Pharm Sci 42(4), 523530.Google Scholar
Makadia, H.K. & Siegel, S.J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3), 13771397.Google Scholar
Makino, K., Mogi, T., Ohtake, N., Yoshida, M., Ando, S., Nakajima, T. & Ohshima, H. (2000). Pulsatile drug release from poly (lactide-co-glycolide) microspheres: How does the composition of the polymer matrices affect the time interval between the initial burst and the pulsatile release of drugs? Colloids Surf B: Biointerfaces 19(2), 173179.Google Scholar
Mendham, J., Denney, R., Barnes, J. & Thomas, M. (2000). Thermal analysis. In Vogel's Textbook of Quantitative Chemical Analysis, 6th ed., Mendham, J., Denney, R.C., Barnes, J.D. & Thomas, M. (Eds.), pp. 475494. Harlow, Essex, UK: Pearson Education Limited.Google Scholar
Morykwas, M.J., Thornton, J.W. & Bartlett, R.H. (1987). Zeta potential of synthetic and biological skin substitutes: Effects on initial adherence. Plast Reconstr Surg 79(5), 732739.Google Scholar
Mukerjee, A. & Vishwanatha, J. (2009). Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res 29(10), 38673875.Google ScholarPubMed
Nishijima, S., Kurokawa, I., Katoh, N. & Watanabe, K. (2000). The bacteriology of acne vulgaris and antimicrobial susceptibility of Propionibacterium acnes and Staphylococcus epidermidis isolated from acne lesions. J Dermatol 27(5), 318323.CrossRefGoogle ScholarPubMed
Ogiso, T., Yamaguchi, T., Iwaki, M., Tanino, T. & Miyake, Y. (2001). Effect of positively and negatively charged liposomes on skin permeation of drugs. J Drug Target 9(1), 4959.Google Scholar
Pool, H., Quitanar, D., Figueroa, J., Mano, C., Bechara, J., Godínez, L. & Mendoza, S. (2012). Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles. J Nanomaterials 2012, 112.CrossRefGoogle Scholar
Purdy, S., Langston, J. & Tait, L. (2003). Presentation and management of acne in primary care: A retrospective cohort study. Br J Gen Pract 53(492), 525529.Google Scholar
Reis, C., Martinho, N., Rosado, C., Fernandes, A. & Roberto, A. (forthcoming). Design of polymeric nanoparticles and its potential applications as drug delivery systems for acne treatment. Drug Dev Ind Pharm (in press).Google Scholar
Sanna, V., Roggio, A.M., Posadino, A.M., Cossu, A., Marceddu, S., Mariani, A., Alzari, V., Uzzau, S., Pintus, G. & Sechi, M. (2011). Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: Formulation, characterization, and cytotoxicity studies. Nanoscale Res Lett 6(1), 260269.CrossRefGoogle Scholar
Schneider, M., Stracke, F., Hansen, S. & Schaefer, U.F. (2009). Nanoparticles and their interactions with the dermal barrier. Dermato Endocrinol 1(4), 197206.Google Scholar
Seidenari, S., Giusti, F. & Giovanni, P. (2000). Instrumental evaluation of occluded patch test reactions. In Handbook of Non-Invasive Methods and the Skin, Serup, J., Jemec, G.B.E. & Grave, G.L. (Eds.), pp. 973977. New York: Taylor & Francis.Google Scholar
Shaw, J.C. (2002). Acne: Effect of hormones on pathogenesis and management. Am J Clin Dermatol 3(8), 571578.CrossRefGoogle ScholarPubMed
Siepmann, F., Le Brun, V. & Siepmann, J. (2006). Drugs acting as plasticizers in polymeric systems: A quantitative treatment. J Control Release 115(3), 298306.Google Scholar
Stevanovic, M., Pavlovic, V., Petkovic, J., Filipic, M. & Uskokovic, D. (2011). ROS-inducing potential, influence of different porogens and in vitro degradation of poly (D,L-lactide-co-glycolide)-based material. Express Polym Lett 5(11), 9961008.Google Scholar
Stinco, G., Bragadin, G., Trotter, D., Pillon, B. & Patrone, P. (2007). Relationship between sebostatic activity, tolerability and efficacy of three topical drugs to treat mild to moderate acne. J Eur Acad Dermatol Venereol 21(3), 320325.Google Scholar
Thiboutot, D. (2008). Versatility of azelaic acid 15% gel in treatment of inflammatory acne vulgaris. J Drugs Dermatol 7(1), 1316.Google Scholar
Thiboutot, D.M., Fleischer, A.B. Jr., Del Rosso, J.Q. & Graupe, K. (2008). Azelaic acid 15% gel once daily versus twice daily in papulopustular rosacea. J Drugs Dermatol 7(6), 541546.Google Scholar
Turner, N.G., Cullander, C. & Guy, R.H. (1998). Determination of the pH gradient across the stratum corneum. J Investig Dermatol Symp Proc 3(2), 110113.Google Scholar
USP (2007). ⟨791⟩ pH. USP 30-NF 25. Rockville, MD: U.S. Pharmacopeial. Google Scholar
Vasita, R., Mani, G., Agrawal, C. & Katti, D. (2010). Surface hydrophilization of electrospun PLGA micro-/nanofibers by blending with Pluronic® F-108. Polymer 51(16), 37063714.Google Scholar
Wolf, J.E. Jr., Kerrouche, N. & Arsonnaud, S. (2006). Efficacy and safety of once-daily metronidazole 1% gel compared with twice-daily azelaic acid 15% gel in the treatment of rosacea. Cutis 77(4), 311.Google ScholarPubMed
Wu, Z.M., Ling, L., Zhou, L.Y., Guo, X.D., Jiang, W., Qian, Y., Luo, K.Q. & Zhang, L.J. (2012). Novel preparation of PLGA/HP55 nanoparticles for oral insulin delivery. Nanoscale Res Lett 7(1), 299307.Google Scholar