Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T13:05:49.383Z Has data issue: false hasContentIssue false

The Determination of the Efficiency of Energy Dispersive X-Ray Spectrometers by a New Reference Material

Published online by Cambridge University Press:  19 September 2006

Marco Alvisi
Affiliation:
ENEA, Research Centre of Brindisi, S.S. 7 Appia km 713.7, I-72100 Brindisi, Italy
Markus Blome
Affiliation:
HDZ Herzogenrather Dienstleistungszentrum GbR, Kaiserstrasse 100, D-52134 Herzogenrath, Germany
Michael Griepentrog
Affiliation:
Bundesanstalt fuer Materialforschung und –pruefung (BAM), D-12200 Berlin, Germany
Vasile-Dan Hodoroaba
Affiliation:
Bundesanstalt fuer Materialforschung und –pruefung (BAM), D-12200 Berlin, Germany
Peter Karduck
Affiliation:
HDZ Herzogenrather Dienstleistungszentrum GbR, Kaiserstrasse 100, D-52134 Herzogenrath, Germany
Marco Mostert
Affiliation:
SAMx, 1554 route de la Roquette, F-06670 Levens, France
Michele Nacucchi
Affiliation:
ENEA, Research Centre of Brindisi, S.S. 7 Appia km 713.7, I-72100 Brindisi, Italy
Mathias Procop
Affiliation:
Bundesanstalt fuer Materialforschung und –pruefung (BAM), D-12200 Berlin, Germany
Martin Rohde
Affiliation:
Roentec, Schwarzschildstrasse 12, D-12489 Berlin, Germany
Frank Scholze
Affiliation:
Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
Peter Statham
Affiliation:
Oxford Instruments Analytical Limited, Halifax Road, High Wycombe, Bucks HP12 3SE, UK
Ralf Terborg
Affiliation:
Roentec, Schwarzschildstrasse 12, D-12489 Berlin, Germany
Jean-Francois Thiot
Affiliation:
SAMx, 1554 route de la Roquette, F-06670 Levens, France
Get access

Abstract

A calibration procedure for the detection efficiency of energy dispersive X-ray spectrometers (EDS) used in combination with scanning electron microscopy (SEM) for standardless electron probe microanalysis (EPMA) is presented. The procedure is based on the comparison of X-ray spectra from a reference material (RM) measured with the EDS to be calibrated and a reference EDS. The RM is certified by the line intensities in the X-ray spectrum recorded with a reference EDS and by its composition. The calibration of the reference EDS is performed using synchrotron radiation at the radiometry laboratory of the Physikalisch-Technische Bundesanstalt. Measurement of RM spectra and comparison of the specified line intensities enables a rapid efficiency calibration on most SEMs. The article reports on studies to prepare such a RM and on EDS calibration and proposes a methodology that could be implemented in current spectrometer software to enable the calibration with a minimum of operator assistance.

Type
MICROANALYSIS
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beckhoff, B., Klein, R., Krumrey, M., Scholze, F., Thornagel, R., & Ulm, G. (2000). X-ray detector calibration in the PTB radiometry laboratory at the electron storage ring BESSY II. Nucl Instr Meth A 444, 480483.Google Scholar
Campbell, J.L., Perujo, A., & Millman, B.M. (1987). Analytic description of Si(Li) spectral lineshapes due to monoenergetic photons. X-ray Spectrom 16, 195201.Google Scholar
Goto, S. (1993). Response functions of a Si(Li) detector for photon energies from 1 to 10 keV. Nucl Instrum Meth A 333, 452457.Google Scholar
Henke, B.L., Gullikson, E.M., & Davis, J.C. (1993). X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92. Atomic Data and Nuclear Data Tables 54, 181342. Available at: http://www-cxro.lbl.gov/optical_constants/atten2.html.Google Scholar
Joy, D. (2002). Improving matrix corrections. Mikrochim Acta 138, 105113.Google Scholar
Kemmer, J., Wiest, F., Pahlke, A., Boslau, O., Goldstrass, P., Eggert, T., Schindler, M., & Eisele, I. (2005). Epitaxy—A new technology for fabrication of advanced silicon radiation detectors. Nucl Instrum Meth A 544, 612619.Google Scholar
Lowe, B.G. (2000). An analytical description of low-energy X-ray spectra in Si(Li) and HPGe detectors. Nucl Instrum Meth A 439, 247261.Google Scholar
Philibert, J. (1963). A method for calculating the absorption correction in electron probe microanalysis. In X-Ray Optics and X-Ray Microanalysis, Proceedings of the 3rd International Symposium on X-Ray Optics and Microanalysis, Pattee, H.H., Cosslett, V.E. & Engström, A. (Eds.), pp. 379392. New York: Academic Press.
Pouchou, J.-L. (1994). Standardless X-ray analysis of bulk specimens. Mikrochim Acta 114/115, 3352.Google Scholar
Pouchou, J.-L., Pichoir, F., & Boivin, D. (1990). Further improvements in quantitation procedures for X-ray microanalysis. In Proceedings of the XII International Symposium on X-Ray Optics and Microanalysis, pp. 5259. Cracow, Poland: Academy of Mining and Metallurgy.
Procop, M. (1999). Estimation of absorbing layer thicknesses for an Si(Li) detector. X-Ray Spectrom 28, 3340.Google Scholar
Reed, S.J.B. (1975). The shape of continuous X-ray spectrum and background corrections for energy-dispersive electron microprobe analysis. X-Ray Spectrom 4, 1417.Google Scholar
Reed, S.J.B. & Ware, N.G. (1972). Escape peaks and internal fluorescence in X-ray spectra recorded with lithium drifted silicon detectors. J Phys E Sci Instrum 5, 582584.Google Scholar
Scholze, F., Beckhoff, B., Kolbe, M., Krumrey, M., Müller, M., & Ulm, G. (2006). Detector calibration and measurement of fundamental parameters for X-ray spectrometry. Proc. EMAS 2005 Workshop, Florence, Italy; Microchimica Acta, in press.
Scholze, F. & Procop, M. (2001). Measurement of detection efficiency and response functions for an Si(Li) X-ray spectrometer in the range 0.1–5 keV. X-Ray Spectrom 30, 6976.Google Scholar
Scholze, F. & Procop, M. (2005). Detection efficiency of energy-dispersive detectors with low-energy windows. X-Ray Spectrom 34, 473476.Google Scholar
Scholze, F., Thornagel, R., & Ulm, G. (1996). Detector calibration at the PTB radiometry laboratory at BESSY. Nucl Instrum Meth A 377, 209216.Google Scholar
Scholze, F., Thornagel, R., & Ulm, G. (2001). Calibration of energy dispersive X-ray detectors at BESSY I and BESSY II. Metrologia 38, 391395.Google Scholar
Scholze, F. & Ulm, G. (1994). Characterization of a windowless Si(Li) detector in the photon energy range 0.1 to 5 keV. Nucl Instrum Meth A 339, 4954.Google Scholar
Schwinger, J. (1949). On the classical radiation of accelerated electrons. Phys Rev 75, 19121925.Google Scholar
Seah, M.P. & Smith, G.C. (1990). Quantitative AES and XPS—Determination of the electron spectrometer transmission function and the detector sensitivity energy dependencies for the production of true electron emission spectra in AES and XPS. Surf Interface Anal 15, 751766.Google Scholar
Ulm, G., Beckhoff, B., Klein, R., Krumrey, M., Rabus, H., & Thornagel, R. (1998). The PTB radiometry laboratory at BESSY II electron storage ring. Proc SPIE 3444, 610621.Google Scholar
Wernisch, J. & Röhrbacher, K. (1998). Standardless analysis. Mikrochim Acta Suppl 15, 307316.Google Scholar