Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T01:19:43.812Z Has data issue: false hasContentIssue false

Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy

Published online by Cambridge University Press:  03 March 2016

Martina Laňková
Affiliation:
Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
Jana Humpolíčková
Affiliation:
J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
Stanislav Vosolsobě
Affiliation:
Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
Zdeněk Cit
Affiliation:
Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
Jozef Lacek
Affiliation:
Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
Martin Čovan
Affiliation:
Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
Milada Čovanová
Affiliation:
Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
Martin Hof
Affiliation:
J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
Jan Petrášek*
Affiliation:
Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
*
*Corresponding author.[email protected]
Get access

Abstract

A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

Type
Special Issue on Imaging Plant Biology
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, D.M., Clausen, M.P., Keller, J., Mueller, V., Wu, C., Bear, J.E., Hell, S.W., Lagerholm, B.C. & Eggeling, C. (2015). Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane—A minimally invasive investigation by STED-FCS. Sci Rep 5, 11454.Google Scholar
Barbez, E., Laňková, M., Pařezová, M., Maizel, A., Zažímalová, E., Petrášek, J., Friml, J. & Kleine-Vehn, J. (2013). Single-cell-based system to monitor carrier driven cellular auxin homeostasis. BMC Plant Biol 13, 20.Google Scholar
Bassé, F., Sainte-Marie, J., Maurin, L. & Bienvenüe, A. (1992). Effect of benzyl alcohol on phospholipid transverse mobility in human erythrocyte membrane. Eur J Biochem 205, 155162.Google Scholar
Boutté, Y., Crosnier, M.-T., Carraro, N., Traas, J. & Satiat-Jeunemaitre, B. (2006). The plasma membrane recycling pathway and cell polarity in plants: Studies on PIN proteins. J Cell Sci 119, 12551265.Google Scholar
Brejchová, J., Sýkora, J., Ostašov, P., Merta, L., Roubalová, L., Janáček, J., Hof, M. & Svoboda, P. (2015). TRH-receptor mobility and function in intact and cholesterol-depleted plasma membrane of HEK293 cells stably expressing TRH-R-eGFP. Biochim Biophys Acta 1848, 781796.Google Scholar
Brown, C.M., Dalal, R.B., Hebert, B., Digman, M.A., Horwitz, A.R. & Gratton, E. (2008). Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J Microsc 229, 7891.Google Scholar
Bücherl, C.A., Bader, A., Westphal, A.H., Laptenok, S.P. & Borst, J.W. (2014). FRET-FLIM applications in plant systems. Protoplasma 251, 383394.Google Scholar
Cha, B., Kenworthy, A., Murtazina, R. & Donowitz, M. (2004). The lateral mobility of NHE3 on the apical membrane of renal epithelial OK cells is limited by the PDZ domain proteins NHERF1/2, but is dependent on an intact actin cytoskeleton as determined by FRAP. J Cell Sci 117, 33533365.Google Scholar
Cleveland, W., Grosse, E. & Shyu, W. (1992). Local regression models. In Statistical Models in S, Chambers, J. & Hastie, T. (Eds.), pp. 309376. Pacific Grove, CA: Wadsworth & Brooks.Google Scholar
Čovanová, M., Sauer, M., Rychtář, J., Friml, J., Petrášek, J. & Zažímalová, E. (2013). Overexpression of the auxin binding protein 1 modulates PIN-dependent auxin transport in tobacco cells. PLoS One 8, e70050.Google Scholar
Digman, M.A., Brown, C.M., Sengupta, P., Wiseman, P.W., Horwitz, A.R. & Gratton, E. (2005). Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89, 13171327.Google Scholar
Digman, M.A. & Gratton, E. (2009). Analysis of diffusion and binding in cells using the RICS approach. Microsc Res Tech 72, 323332.Google Scholar
Feraru, E., Feraru, M.I., Kleine-Vehn, J., Martinière, A., Mouille, G., Vanneste, S., Vernhettes, S., Runions, J. & Friml, J. (2011). PIN polarity maintenance by the cell wall in Arabidopsis. Curr Biol 21, 338343.Google Scholar
Gowrishankar, K., Ghosh, S., Saha, S., Rumamol, C., Mayor, S. & Rao, M. (2012). Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149, 13531367.Google Scholar
Gudheti, M.V., Curthoys, N.M., Gould, T.J., Kim, D., Gunewardene, M.S., Gabor, K.A., Gosse, J.A., Kim, C.H., Zimmerberg, J. & Hess, S.T. (2013). Actin mediates the nanoscale membrane organization of the clustered membrane protein influenza hemagglutinin. Biophys J 104, 21822192.Google Scholar
Gurtovenko, A.A. & Anwar, J. (2007). Modulating the structure and properties of cell membranes: The molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B 111, 1045310460.Google Scholar
Heinemann, F., Vogel, S.K. & Schwille, P. (2013). Lateral membrane diffusion modulated by a minimal actin cortex. Biophys J 104, 14651475.Google Scholar
Hink, M.A., Shah, K., Russinova, E., de Vries, S.C. & Visser, A.J.W.G. (2008). Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor oligomerization. Biophys J 94, 10521062.Google Scholar
Jaqaman, K. & Grinstein, S. (2012). Regulation from within: The cytoskeleton in transmembrane signaling. Trends Cell Biol 22, 515526.Google Scholar
Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S.L. & Danuser, G. (2008). Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5, 695702.Google Scholar
Kleine-Vehn, J., Dhonukshe, P., Swarup, R., Bennett, M. & Friml, J. (2006). Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18, 31713181.Google Scholar
Kleine-Vehn, J., Wabnik, K., Martinière, A., Łangowski, Ł., Willig, K., Naramoto, S., Leitner, J., Tanaka, H., Jakobs, S., Robert, S., Luschnig, C., Govaerts, W., Hell, S.W., Runions, J. & Friml, J. (2011). Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol Syst Biol 7, 540.Google Scholar
Kolin, D.L. & Wiseman, P.W. (2007). Advances in image correlation spectroscopy: Measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49, 141164.Google Scholar
Komis, G., Šamajová, O., Ovečka, M. & Šamaj, J. (2015). Super-resolution microscopy in plant cell imaging. Trends Plant Sci 20, 834843.Google Scholar
Krtková, J., Havelková, L., Křepelová, A., Fišer, R., Vosolsobě, S., Novotná, Z., Martinec, J. & Schwarzerová, K. (2012). Loss of membrane fluidity and endocytosis inhibition are involved in rapid aluminum-induced root growth cessation in Arabidopsis thaliana. Plant Physiol Biochem 60, 8897.Google Scholar
Kusumi, A., Suzuki, K.G.N., Kasai, R.S., Ritchie, K. & Fujiwara, T.K. (2011). Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 36, 604615.Google Scholar
Langhans, M. & Meckel, T. (2014). Single-molecule detection and tracking in plants. Protoplasma 251, 277291.Google Scholar
Laňková, M., Smith, R.S., Pesek, B., Kubes, M., Zazímalová, E., Petrásek, J. & Hoyerová, K. (2010). Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells. J Exp Bot 61, 35893598.Google Scholar
Lefebvre, B., Batoko, H., Duby, G. & Boutry, M. (2004). Targeting of a Nicotiana plumbaginifolia H+ -ATPase to the plasma membrane is not by default and requires cytosolic structural determinants. Plant Cell 16, 17721789.Google Scholar
Li, X., Luu, D.T., Maurel, C. & Lin, J. (2013). Probing plasma membrane dynamics at the single-molecule level. Trends Plant Sci 18, 617624.Google Scholar
Li, X., Wang, X., Yang, Y., Li, R., He, Q., Fang, X., Luu, D.-T., Maurel, C. & Lin, J. (2011). Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23, 37803797.Google Scholar
Luu, D.-T., Martinière, A., Sorieul, M., Runions, J. & Maurel, C. (2012). Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporins in Arabidopsis roots under salt stress. Plant J 69, 894905.Google Scholar
Malínská, K., Jelínková, A. & Petrášek, J. (2014). The use of FM dyes to analyze plant endocytosis. Methods Mol Biol 1209, 111.Google Scholar
Markham, J.E., Molino, D., Gissot, L., Bellec, Y., Hématy, K., Marion, J., Belcram, K., Palauqui, J.-C., Satiat-Jeunemaître, B. & Faure, J.-D. (2011). Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. Plant Cell 23, 23622378.Google Scholar
Martinière, A., Lavagi, I., Nageswaran, G., Rolfe, D.J., Maneta-Peyret, L., Luu, D.-T., Botchway, S.W., Webb, S.E.D., Mongrand, S., Maurel, C., Martin-Fernandez, M.L., Kleine-Vehn, J., Friml, J., Moreau, P. & Runions, J. (2012). Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci USA 109, 1280512810.Google Scholar
Martinière, A. & Runions, J. (2013). Protein diffusion in plant cell plasma membranes: The cell-wall corral. Front Plant Sci 4, 515.Google Scholar
Men, S., Boutté, Y., Ikeda, Y., Li, X., Palme, K., Stierhof, Y.-D., Hartmann, M.-A., Moritz, T. & Grebe, M. (2008). Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 10, 237244.Google Scholar
Mieruszynski, S., Digman, M.A., Gratton, E. & Jones, M.R. (2015). Characterization of exogenous DNA mobility in live cells through fluctuation correlation spectroscopy. Sci Rep 5, 13848.Google Scholar
Mravec, J., Skůpa, P., Bailly, A., Hoyerová, K., Křeček, P., Bielach, A., Petrášek, J., Zhang, J., Gaykova, V., Stierhof, Y.-D., Dobrev, P.I., Schwarzerová, K., Rolčík, J., Seifertová, D., Luschnig, C., Benková, E., Zažímalová, E., Geisler, M. & Friml, J. (2009). Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459, 11361140.Google Scholar
Nagata, T., Nemoto, Y. & Hasezawa, S. (1992). Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132, 130.Google Scholar
Nocarova, E. & Fischer, L. (2009). Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression. BMC Plant Biol 9, 44.Google Scholar
Norris, S.C.P., Humpolíčková, J., Amler, E., Huranová, M., Buzgo, M., Macháň, R., Lukáš, D. & Hof, M. (2011). Raster image correlation spectroscopy as a novel tool to study interactions of macromolecules with nanofiber scaffolds. Acta Biomater 7, 41954203.Google Scholar
Offringa, R. & Huang, F. (2013). Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells. J Integr Plant Biol 55, 789808.Google Scholar
Ozgen, H., Schrimpf, W., Hendrix, J., de Jonge, J.C., Lamb, D.C., Hoekstra, D., Kahya, N. & Baron, W. (2014). The lateral membrane organization and dynamics of myelin proteins PLP and MBP are dictated by distinct galactolipids and the extracellular matrix. PloS One 9, e101834.Google Scholar
Petrášek, J., Černá, A., Schwarzerová, K., Elčkner, M., Morris, D.A. & Zažímalová, E. (2003). Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131, 254263.Google Scholar
R Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Rossow, M.J., Sasaki, J.M., Digman, M.A. & Gratton, E. (2010). Raster image correlation spectroscopy in live cells. Nat Protocols 5, 17611774.Google Scholar
Serag, M.F., Braeckmans, K., Habuchi, S., Kaji, N., Bianco, A. & Baba, Y. (2012). Spatiotemporal visualization of subcellular dynamics of carbon nanotubes. Nano Lett 12, 61456151.Google Scholar
Shaw, S.L. & Ehrhardt, D.W. (2013). Smaller, faster, brighter: Advances in optical imaging of living plant cells. Annu Rev Plant Biol 64, 351375.Google Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Liceiri, K., Tomancak, P. & Cardona, A. (2012). Fiji: An open source platform for biological image analysis. Nat Methods 9, 676682.Google Scholar
Sinnecker, D., Voigt, P., Hellwig, N. & Schaefer, M. (2005). Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44, 70857094.Google Scholar
Sprague, B.L. & McNally, J.G. (2005). FRAP analysis of binding: Proper and fitting. Trends Cell Biol 15, 8491.Google Scholar
Sprague, B.L., Pego, R.L., Stavreva, D.A. & McNally, J.G. (2004). Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J 86, 34733495.Google Scholar
Traverso, J.A., Micalella, C., Martinez, A., Brown, S.C., Satiat-Jeunemaitre, B., Meinnel, T. & Giglione, C. (2013). Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study. Plant Cell 25, 10561077.Google Scholar
Wachsmuth, M. (2014). Molecular diffusion and binding analyzed with FRAP. Protoplasma 251, 373382.Google Scholar
Wang, E., Babbey, C.M. & Dunn, K.W. (2005). Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J Microsc 218, 148159.Google Scholar
Supplementary material: File

Laňková supplementary material

Supplementary Figure

Download Laňková supplementary material(File)
File 1.1 MB