Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Dumitraschkewitz, Phillip
Gerstl, Stephan S. A.
Stephenson, Leigh T.
Uggowitzer, Peter J.
and
Pogatscher, Stefan
2018.
Clustering in Age‐Hardenable Aluminum Alloys.
Advanced Engineering Materials,
Vol. 20,
Issue. 10,
Dong, Yan
Etienne, Auriane
Frolov, Alex
Fedotova, Svetlana
Fujii, Katsuhiko
Fukuya, Koji
Hatzoglou, Constantinos
Kuleshova, Evgenia
Lindgren, Kristina
London, Andrew
Lopez, Anabelle
Lozano-Perez, Sergio
Miyahara, Yuichi
Nagai, Yasuyoshi
Nishida, Kenji
Radiguet, Bertrand
Schreiber, Daniel K.
Soneda, Naoki
Thuvander, Mattias
Toyama, Takeshi
Wang, Jing
Sefta, Faiza
Chou, Peter
and
Marquis, Emmanuelle A.
2019.
Atom Probe Tomography Interlaboratory Study on Clustering Analysis in Experimental Data Using the Maximum Separation Distance Approach.
Microscopy and Microanalysis,
Vol. 25,
Issue. 2,
p.
356.
Wang, Jing
Schreiber, Daniel K.
Bailey, Nathan
Hosemann, Peter
and
Toloczko, Mychailo B.
2019.
The Application of the OPTICS Algorithm to Cluster Analysis in Atom Probe Tomography Data.
Microscopy and Microanalysis,
Vol. 25,
Issue. 2,
p.
338.
Ghamarian, I.
and
Marquis, E.A.
2019.
Hierarchical density-based cluster analysis framework for atom probe tomography data.
Ultramicroscopy,
Vol. 200,
Issue. ,
p.
28.
Vurpillot, Francois
Hatzoglou, Constantinos
Radiguet, Bertrand
Da Costa, Gerald
Delaroche, Fabien
and
Danoix, Frederic
2019.
Enhancing Element Identification by Expectation–Maximization Method in Atom Probe Tomography.
Microscopy and Microanalysis,
Vol. 25,
Issue. 2,
p.
367.
Brust, Alexander F.
Payton, Eric J.
Hobbs, Toren J.
and
Niezgoda, Stephen R.
2019.
Application of the Maximum Flow–Minimum Cut Algorithm to Segmentation and Clustering of Materials Datasets.
Microscopy and Microanalysis,
Vol. 25,
Issue. 4,
p.
924.
Reddy, Steven M.
Saxey, David W.
Rickard, William D. A.
Fougerouse, Denis
Montalvo, Stephanie D.
Verberne, Rick
and
van Riessen, Arie
2020.
Atom Probe Tomography: Development and Application to the Geosciences.
Geostandards and Geoanalytical Research,
Vol. 44,
Issue. 1,
p.
5.
Ghamarian, Iman
Yu, Li-Jen
and
Marquis, Emmanuelle A.
2020.
Quantification of Solute Topology in Atom Probe Tomography Data: Application to the Microstructure of a Proton-Irradiated Alloy 625.
Metallurgical and Materials Transactions A,
Vol. 51,
Issue. 1,
p.
42.
Mukherjee, Arpan
Broderick, Scott
and
Rajan, Krishna
2020.
Modularity optimization for enhancing edge detection in microstructural features using 3D atomic chemical scale imaging.
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,
Vol. 38,
Issue. 3,
Mason, Daniel R.
and
London, Andrew J.
2020.
Morphological analysis of 3d atom probe data using Minkowski functionals.
Ultramicroscopy,
Vol. 211,
Issue. ,
p.
112940.
Lawitzki, R.
Beinke, D.
Wang, D.
and
Schmitz, G.
2021.
On the formation of nano-sized precipitates during cooling of NiAl- strengthened ferritic alloys.
Materials Characterization,
Vol. 171,
Issue. ,
p.
110722.
Kühbach, Markus
Bajaj, Priyanshu
Zhao, Huan
Çelik, Murat H.
Jägle, Eric A.
and
Gault, Baptiste
2021.
On strong-scaling and open-source tools for analyzing atom probe tomography data.
npj Computational Materials,
Vol. 7,
Issue. 1,
Li, Yue
Zhou, Xuyang
Colnaghi, Timoteo
Wei, Ye
Marek, Andreas
Li, Hongxiang
Bauer, Stefan
Rampp, Markus
and
Stephenson, Leigh T.
2021.
Convolutional neural network-assisted recognition of nanoscale L12 ordered structures in face-centred cubic alloys.
npj Computational Materials,
Vol. 7,
Issue. 1,
Gault, Baptiste
Chiaramonti, Ann
Cojocaru-Mirédin, Oana
Stender, Patrick
Dubosq, Renelle
Freysoldt, Christoph
Makineni, Surendra Kumar
Li, Tong
Moody, Michael
and
Cairney, Julie M.
2021.
Atom probe tomography.
Nature Reviews Methods Primers,
Vol. 1,
Issue. 1,
Vincent, Galen B.
Proudian, Andrew P.
and
Zimmerman, Jeramy D.
2021.
Three dimensional cluster analysis for atom probe tomography using Ripley’s K-function and machine learning.
Ultramicroscopy,
Vol. 220,
Issue. ,
p.
113151.
Zhou, Xuyang
Wei, Ye
Kühbach, Markus
Zhao, Huan
Vogel, Florian
Darvishi Kamachali, Reza
Thompson, Gregory B.
Raabe, Dierk
and
Gault, Baptiste
2022.
Revealing in-plane grain boundary composition features through machine learning from atom probe tomography data.
Acta Materialia,
Vol. 226,
Issue. ,
p.
117633.
Klupś, Przemysław
Haley, Daniel
London, Andrew J
Gardner, Hazel
Famelton, James
Jenkins, Benjamin M
Hyde, Jonathan M
Bagot, Paul AJ
and
Moody, Michael P
2022.
PosgenPy: An Automated and Reproducible Approach to Assessing the Validity of Cluster Search Parameters in Atom Probe Tomography Datasets.
Microscopy and Microanalysis,
Vol. 28,
Issue. 4,
p.
1066.
Li, Yue
Wei, Ye
Wang, Zhangwei
Liu, Xiaochun
Colnaghi, Timoteo
Han, Liuliu
Rao, Ziyuan
Zhou, Xuyang
Huber, Liam
Dsouza, Raynol
Gong, Yilun
Neugebauer, Jörg
Marek, Andreas
Rampp, Markus
Bauer, Stefan
Li, Hongxiang
Baker, Ian
Stephenson, Leigh T.
and
Gault, Baptiste
2023.
Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography.
Nature Communications,
Vol. 14,
Issue. 1,
Saxena, Alaukik
Polin, Nikita
Kusampudi, Navyanth
Katnagallu, Shyam
Molina-Luna, Leopoldo
Gutfleisch, Oliver
Berkels, Benjamin
Gault, Baptiste
Neugebauer, Jörg
and
Freysoldt, Christoph
2023.
A Machine Learning Framework for Quantifying Chemical Segregation and Microstructural Features in Atom Probe Tomography Data.
Microscopy and Microanalysis,
Vol. 29,
Issue. 5,
p.
1658.
Famelton, J.R.
Williams, C.A.
Barbatti, C.
Bagot, P.A.J.
and
Moody, M.P.
2023.
Point excess solute: A new metric for quantifying solute segregation in atom probe tomography datasets including application to naturally aged solute clusters in Al-Mg-Si-(Cu) alloys.
Materials Characterization,
Vol. 206,
Issue. ,
p.
113402.