Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T20:04:44.359Z Has data issue: false hasContentIssue false

Denoising Large In Situ TEM Image Datasets: A Convolutional Neural Network-based Approach

Published online by Cambridge University Press:  30 July 2020

Joshua Vincent
Affiliation:
Arizona State University, Tempe, Arizona, United States
Sreyas Mohan
Affiliation:
New York University, New York City, New York, United States
Carlos Fernandez-Granda
Affiliation:
New York University, New York City, New York, United States
Peter Crozier
Affiliation:
Arizona State University, Tempe, Arizona, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advances in Modeling, Simulation, and Artificial Intelligence in Microscopy and Microanalysis for Physical and Biological Systems
Copyright
Copyright © Microscopy Society of America 2020

References

Somorjai, G. A., Langmuir, 1991. 7(12): p. 3176-3182.10.1021/la00060a043CrossRefGoogle Scholar
Crozier, P. A., et al. ., Microscopy and Microanalysis, 2019. 25(S2): p. 1464-1465.10.1017/S1431927619008055CrossRefGoogle Scholar
Faruqi, A. and McMullan, G., Nucl. Instrum. Methods Phys. Res, 2018. 878: p. 180-190.10.1016/j.nima.2017.07.037CrossRefGoogle Scholar
Barthel, J., Ultramicroscopy, 2018. 193, p. 1-11.10.1016/j.ultramic.2018.06.003CrossRefGoogle Scholar
Mohan, S., Kadkhodaie, Z., Simocelli, E. P., and Fernandez-Granda, C., 2019. Robust and Interpretable Blind Image Denoising via Bias-Free Convolutional Neural Networks, preprint available at https://arxiv.org/abs/1906.05478Google Scholar
We gratefully acknowledge support of NSF grants CBET-1604971 and OAC-1940263, and the facilities at ASU's John M. Cowley Center for High Resolution Electron Microscopy.Google Scholar