Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T03:22:04.320Z Has data issue: false hasContentIssue false

Delta- and Gamma-Tocotrienols Induce Classical Ultrastructural Apoptotic Changes in Human T Lymphoblastic Leukemic Cells

Published online by Cambridge University Press:  16 April 2012

Rebecca S.Y. Wong*
Affiliation:
Division of Human Biology, School of Medical and Health Sciences, International Medical University, Malaysia No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
Ammu K. Radhakrishnan
Affiliation:
Division of Pathology, School of Medical and Health Sciences, International Medical University, Malaysia No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
Tengku Azmi Tengku Ibrahim
Affiliation:
Microscopy Unit, Institute of Bioscience, University Putra Malaysia, Serdang 43100 Selangor, Malaysia
Soon-Keng Cheong
Affiliation:
Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Malaysia. Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor, Malaysia
*
Corresponding author. E-mail: [email protected]; [email protected]
Get access

Abstract

Tocotrienols are isomers of the vitamin E family, which have been reported to exert cytotoxic effects in various cancer cells. Although there have been some reports on the effects of tocotrienols in leukemic cells, ultrastructural evidence of tocotrienol-induced apoptotic cell death in leukemic cells is lacking. The present study investigated the effects of three isomers of tocotrienols (alpha, delta, and gamma) on a human T lymphoblastic leukemic cell line (CEM-SS). Cell viability assays showed that all three isomers had cytotoxic effects (p < 0.05) on CEM-SS cells with delta-tocotrienol being the most potent. Transmission electron microscopy showed that the cytotoxic effects by delta- and gamma-tocotrienols were through the induction of an apoptotic pathway as demonstrated by the classical ultrastructural apoptotic changes characterized by peripheral nuclear chromatin condensation and nuclear fragmentation. These findings were confirmed biochemically by the demonstration of phosphatidylserine externalization via flow cytometry analysis. This is the first study showing classical ultrastructural apoptotic changes induced by delta- and gamma-tocotrienols in human T lymphoblastic leukemic cells.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, M.K., Agarwal, M.L., Athar, M. & Gupta, S. (2004). Tocotrienol-rich fraction of palm oil activates p53, modulates Bax/Bcl2 ratio and induces apoptosis independent of cell cycle association. Cell Cycle 3(2), 205211.CrossRefGoogle ScholarPubMed
Ahn, K.S., Sethi, G., Krishnan, K. & Aggarwal, B.B. (2007). Gamma-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J Biol Chem 282, 809820.CrossRefGoogle ScholarPubMed
Drotleff, A.M. & Ternes, W. (2001). Determination of RS, E/Z-tocotrienols by HPLC. J Chomatogr A 901, 215223.CrossRefGoogle Scholar
Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicol Pathol 35(4), 495516.CrossRefGoogle ScholarPubMed
Elson, C.E. (1992). Tropical oils: Nutritional and scientific issues. Crit Rev Food Sci Nutr 31(1-2), 79102.CrossRefGoogle ScholarPubMed
Fink, S.L. & Cookson, B.T. (2005). Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead dying eukaryotic cells. Infect Immun 73(4), 19071916.CrossRefGoogle ScholarPubMed
Galluzzi, L., Maiuri, M.C., Vitale, I., Zischka, H., Castedo, M., Zitvogel, L. & Kroemer, G. (2007). Cell death modalities: Classification and pathophysiological implications. Cell Death Differ 14, 12371266.CrossRefGoogle ScholarPubMed
Hengartner, M.O. (2000). Apoptosis: Corralling the corpses. Cell 104, 325328.CrossRefGoogle Scholar
Hussein, D. & Mo, H. (2009). d-δ-Tocotrienol-mediated suppression of the proliferation of human PANC-1, MIA PaCa-2, and BxPC-3 pancreatic carcinoma cells. Pancreas 38(4), e124e136.CrossRefGoogle ScholarPubMed
Inoue, A., Takitani, K., Koh, M., Kawakami, C., Kuno, T. & Tamai, H. (2011). Induction of apoptosis by γ-tocotrienol in human cancer cell lines and leukemic blasts from patients: Dependency on Bid, cytochrome c, and caspase pathway. Nutr Cancer 63(5), 763770.CrossRefGoogle ScholarPubMed
Jiang, Q., Wong, J. & Ames, B.N. (2004). Gamma-tocopherol induces apoptosis in androgen-responsive LNCaP prostate cancer cells via caspase-dependent and independent mechanisms. Ann N Y Acad Sci 1031, 399400.CrossRefGoogle ScholarPubMed
Kaatsch, P. (2010). Epidemiology of childhood cancer. Cancer Treat Rev 36(4), 277285.CrossRefGoogle ScholarPubMed
Kannappan, R., Yadav, V.R. & Aggarwal, B.B. (2010). γ-Tocotrienol but not γ-tocopherol blocks STAT3 cell signaling pathway through induction of protein-tyrosine phosphatase SHP-1 and sensitizes tumor cells to chemotherapeutic agents. J Biol Chem 285(43), 3352033528.CrossRefGoogle Scholar
Kerr, J.F. & Harmon, B.V. (1991). Definition and incidence of apoptosis: An historical perspective. In Apoptosis: The Molecular Basis of Cell Death, Tomei, L.D. & Cope, F.O. (Eds.), vol. 3, pp. 529. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Kerr, J.F.R., Winterford, C.M. & Harmon, B.V. (1994). Apoptosis: Its significance in cancer and cancer therapy. Cancer 73, 20132026.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Kroemer, G., El-Deiry, W.S., Golstein, P., Peter, M.E., Vaux, D., Vandenabeele, P., Zhivotovsky, B., Blagosklonny, M.V., Malorni, W., Knight, R.A., Piacentinim, M., Nagata, S. & Melino, G. (2005). Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12, 14631467.CrossRefGoogle ScholarPubMed
Mandal, D., Moitra, P.K., Saha, S. & Basu, J. (2002). Caspase 3 regulates phosphatidylserine externalization and phagocytosis of oxidatively stressed erythrocytes. FEBS Lett 513(2-3), 184188.CrossRefGoogle ScholarPubMed
Massart, C., Barbet, R., Genetet, N. & Gibassier, J. (2004). Doxorubicin induces Fas-mediated apoptosis in human thyroid carcinoma cells. Thyroid 14(4), 263270.CrossRefGoogle ScholarPubMed
Mueller, H., Kassack, M.U. & Wiese, M. (2004). Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J Biomol Screen 9(6), 506515.CrossRefGoogle ScholarPubMed
Narimah, A.H.H, Permeen, A.Y., Khalid, B.A.K., A Ghapor, M.T. & Wan Ngah, W.Z. (2008). The possible mechanism of action of palm oil γ-tocotrienol and α-tocopherol on the cervical carcinoma CaSki cell apoptosis. Biomed Res 19(3), 194200.Google Scholar
Nesaretnam, K., Ambra, R., Selvaduray, K.R., Radhakrishnan, A., Canali, R. & Virgili, F. (2004). Tocotrienol-rich fraction from palm oil and gene expression in human breast cancer cells. Ann NY Acad Sci 1031, 143157.CrossRefGoogle ScholarPubMed
Pierpaoli, E., Viola, V., Pilolli, F., Piroddi, M., Galli, F. & Provinciali, M. (2010). Gamma- and delta-tocotrienols exert a more potent anticancer effect than alpha-tocopheryl succinate on breast cancer cell lines irrespective of HER-2/neu expression. Life Sci 86(17-18), 668675.CrossRefGoogle ScholarPubMed
Shah, S., Gapor, A. & Sylvester, P.W. (2002). Role of caspase-8 activation in mediating vitamin E-induced apoptosis in murine mammary cancer cells. Nutri Cancer 45(2), 236246.CrossRefGoogle Scholar
Shier, W.T. (1991). Mammalian Cell Culture on $5 a Day: A Laboratory Manual of Low Cost Methods, pp. 6471. University of the Philippines at Los Baños.Google Scholar
Sutton, D.J & Tchounwou, P.B. (2006). Mercury-induced externalization of phosphatidylserine and caspase 3 activation in human liver carcinoma (HepG2) cells. Int J Environ Res Public Health 3(1), 3842.CrossRefGoogle ScholarPubMed
Takahashi, K. & Loo, G. (2004). Disruption of mitochondria during tocotrienol-induced apoptosis in MDA-MB-231 human breast cancer cells. Biochem Pharm 67(20), 315324.CrossRefGoogle ScholarPubMed
van Engeland, M., Nieland, L.J., Ramaekers, F.C., Schutte, B. & Reutelingsperger, C.P. (1998). Annexin V-affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31(1), 19.3.0.CO;2-R>CrossRefGoogle Scholar
Wu, S.J. & Ng, L.T. (2010). Tocotrienols inhibited growth and induced apoptosis in human HeLa cells through the cell cycle signaling pathway. Interg Cancer Ther 9(1), 6672.CrossRefGoogle ScholarPubMed
Yap, W.N., Chang, P.N., Han, H.Y., Lee, D.T.W., Ling, M.T., Wong, Y.C. & Yap, Y.L. (2008). γ-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways. Br J Cancer 99(11), 18321841.CrossRefGoogle ScholarPubMed
Yap, W.N., Zaiden, N., Tan, Y.L., Ngoh, C.P., Zhang, X.W., Wong, Y.C., Ling, M.T. & Yap, Y.L. (2009). Id1, inhibitor of differentiation, is a key protein mediating anti-tumuor responses of gamma-tocotrienol in breast cancer cells. Cancer Lett 291(2), 187199.CrossRefGoogle Scholar
Yu, W., Park, S.K., Jia, L., Tiwary, R., Scott, W.W., Li, J., Wang, P., Simmons-Menchaca, M., Sanders, B.G. & Kline, K. (2008). RRR-gamma-tocopherol induces human breast cancer cells to undergo apoptosis via death receptor 5 (DR5)-mediated apoptotic signaling. Cancer Lett 259(2), 165176.CrossRefGoogle ScholarPubMed