Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T16:06:11.322Z Has data issue: false hasContentIssue false

Cross-Section and Staining-Based Techniques for Investigating Organic Materials in Painted and Polychrome Works of Art: A Review

Published online by Cambridge University Press:  31 July 2012

Irina Crina Anca Sandu*
Affiliation:
REQUIMTE, Departamento de Conservação e Restauro, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
Stephan Schäfer
Affiliation:
Departamento de Conservação e Restauro, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516, Caparica, Portugal
Donata Magrini
Affiliation:
Institute for Conservation and Valorization of Cultural Heritage (ICVBC), National Council of Research (CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
Susanna Bracci
Affiliation:
Institute for Conservation and Valorization of Cultural Heritage (ICVBC), National Council of Research (CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
Cecilia A. Roque
Affiliation:
REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa (UNL), 2829-516, Caparica, Portugal
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The article presents a review of the use of cross-section and staining techniques for investigating natural organic materials (mainly proteinaceous and oil-based binders/varnishes) in painted and polychrome artworks, considering the requirements of conservation practice and routine diagnostics. The reviewed literature calls attention to the importance of using cross sections to prepare samples for optical microscopy and to different properties of embedding resins; the most appropriate instrumental conditions for optical microscopy; and the advantages and disadvantages of the most common staining techniques. A few case studies were selected to illustrate the use of autofluorescence (intrinsic fluorescence) and induced fluorescence (using specific staining tests and fluorophore-labeled antibodies) for mapping and identifying organic paint materials in cross sections. New directions of research in cross-section analyses and fluorescence-based techniques for the identification and mapping of artistic materials are presented. The complementary use of different stains on the same cross section, further exploration of intrinsic and induced fluorescence of aged versus fresh materials, and applicability of cross-section observation and staining as complementary methods for assessing the effectiveness of restoration treatments, such as cleaning and consolidation, are discussed in the last section of the article.

Type
Review Article
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alba, F.J., Bermudez, A., Bartolome, S. & Daban, J.R. (1996). Detection of five nanograms of protein by two-minute Nile red staining of unfixed SDS gels. BioTechniques 21, 625626.CrossRefGoogle ScholarPubMed
Aldrovandi, A. & Picollo, M. (2001). Metodi di documentazione e indagini non-invasive sui dipinti. Il Prato, Collana i Talenti.Google Scholar
Appolonia, L. & Volpin, S. (2001). Le analisi di laboratorio applicate ai beni artistici policromi. Padova, Italy: Il Prato.Google Scholar
Arbeloa, F.L., Arbeloa, T.L. & Arbeloa, I.L. (1999). Electronic spectroscopy of pyrromethene 546. J Photochem Photobiol A 121, 177182.Google Scholar
Arbeloa, F.L., Arbeloa, T.L., Estevez, M.J. & Arbeloa, I.L. (1991). Photophysics of rhodamines. Molecular structure and solvent effects. J Phys Chem 95(6), 22032208.CrossRefGoogle Scholar
Arslanoglu, J., Zaleski, S. & Loike, J. (2011). An improved method of protein localization in artworks through SERS nanotag-complexed antibodies. Anal Bioanal Chem 399(9), 29973010.CrossRefGoogle ScholarPubMed
Banks, P.R. & Paquette, D.M. (1995). Comparison of three common amine reactive fluorescent-probes used for conjugation to biomolecules by capillary zone electrophoresis. Bioconjug Chem 6(4), 447458.CrossRefGoogle ScholarPubMed
Barton, H. (2007). Starch residues on museum artefacts: Implications for determining tool use. J Arch Sci 34(10), 17521762.CrossRefGoogle Scholar
Beaudoin, A. (2004). New technique for revealing latent fingerprints on wet, porous surfaces: Oil Red O. J Forensic Identification 54(4), 413421.Google Scholar
Becker, E. (1989). Fluorescence Microscopy. Germany: Wild Leitz GmbH.Google Scholar
Birtalan, E., Rudat, B., Kolmel, D.K., Fritz, D., Vollrath, S.B.L., Schepers, U. & Brase, S. (2011). Investigating rhodamine B-labeled peptoids: Scopes and limitations of its applications. Peptide Sci 96(5), 694701.CrossRefGoogle ScholarPubMed
Bousfield, B. (1992). Surface Preparation and Microscopy of Materials. New York: Wiley.CrossRefGoogle Scholar
Brad, D. & Roth, J. (1984). ‘Golden blot’—Detection of polyclonal and monoclonal antibodies bound to antigens on nitrocellulose by Protein A—Gold complexes. Anal Biochem 142, 7983.CrossRefGoogle Scholar
Carlyle, L. (2001). The Artist's Assistant. Oil Painting Instruction Manuals and Handbooks in Britain 1800–1900 with Reference to Selected Eighteenth-Century Sources. London: Archetype Publications.Google Scholar
Cartechini, L., Vagnini, M., Palmieri, M., Pitzurra, L., Mello, T., Mazurek, J. & Chiari, G. (2010). Immunodetection of proteins in ancient paint media. Accounts Chem Res 43, 867876.CrossRefGoogle ScholarPubMed
Cooper, M.S., Hardin, W.R., Petersen, T.W. & Cattolico, R.A. (2010). Visualizing “green oil” in live algal cells. J Biosci Bioeng 109 (2), 198201.CrossRefGoogle Scholar
De Bernardo, S., Weigele, M., Toome, V., Manhart, K., Leimgruber, W., Böhlen, P., Stein, S. & Udenfriend, S. (1974). Studies on the reaction of fluorescamine with primary amines. Arch Biochem Biophys 163, 390399.CrossRefGoogle ScholarPubMed
De La Rie, R. (1982). Fluorescence of paint and varnish layers, Part I–II–III. Studies in Conservation 27 (Pt I), 1–7; 27(Pt II), 65–69; 27(Pt III), 102–108. Google Scholar
Derndarsky, M. & Ocklind, G. (2001). Some preliminary observations on subsurface damage on experimental and archaeological quartz tools using CLSM and dye. J Arch Sci 28, 11491158.CrossRefGoogle Scholar
Derrick, M., Souza, L., Kieslich, T., Florsheim, H. & Stulik, D. (1994). Embedding paint cross-section samples in polyester resins: Problems and solutions. J Am Inst Conservation 33(3), 227245.CrossRefGoogle Scholar
Deyl, Z., Mikšik, I. & Zicha, J. (1999). Multicomponent analysis by off-line combination of synchronous fluorescence spectroscopy and capillary electrophoresis of collagen glycation adducts. J Chromatogr A 836, 161171.CrossRefGoogle ScholarPubMed
Doménech-Carbó, M.T. (2008). Novel analytical methods for characterizing binding media and protective coatings in artworks. Anal Chim Acta 621, 109139.CrossRefGoogle ScholarPubMed
Dorge, V. & Carey Howlett, F. (Eds.) (1994). Painted wood: History and conservation. Proceedings of a symposium organized by the Wooden Artifacts Group of the American Institute for Conservation of Historic and Artistic Works and the Foundation of the AIC, Colonial Williamsburg Foundation, Williamsburg, Virginia, November 11–14, 1994. Google Scholar
Feigl, F. & Anger, V. (1966). Spot-Tests in Organic Analysis, 7th ed. New York: Elsevier.Google Scholar
Fowler, S.D. & Greenspan, P. (1985). Application of Nile Red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: Comparison with Oil Red O. J Histochem Cytochem 33(8), 833836.CrossRefGoogle ScholarPubMed
Garrido, M. Del C. & Cabrera, J.M. (1986). Cross sections. In PACT 13, 155169.Google Scholar
Gay, M.C. (1970). Essais d'identification et de localisation des liants par des colorations. In Annales du Laboratoire de Recherche des Musées de France, pp. 824.Google Scholar
Gay, M.C. (1978). Application of the staining method to cross-sections in the study of the media of various Italian paintings of the fourteenth and fifteenth centuries. In Conservation and Restoration of Pictorial Art, Bromelle, B. & Smith, P. (Eds.), pp. 7883. London: Butterworths.Google Scholar
Gettens, R.J. & Stout, G.L. (1966). Painting Materials: A Short Encyclopaedia. New York: Dover Publications.Google Scholar
Gocze, P.M. & Freeman, D.A. (1994). Factors underlying the variability of lipid droplet fluorescence in MA-10 Leydig tumor cells. Cytometry 17, 151158.CrossRefGoogle ScholarPubMed
Green, M.R., Pastewka, J.V. & Peacock, A.C. (1973). Differential staining of phosphoproteins on polyacrylamide gels with a cationic carbocyanine dye. Anal Biochem 56, 4351.CrossRefGoogle ScholarPubMed
Greenspan, P., Mayer, E.P. & Fowler, S.D. (1985). Nile Red—A selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100, 965973.CrossRefGoogle ScholarPubMed
Heginbotham, A., Millay, V. & Quick, M. (2004). The use of immunofluorescence microscopy (IFM) and enzyme-linked immunosorbent assay (ELISA) as complementary techniques for protein identification in artists' materials. J Am Inst Conservation 45(2), 89105.CrossRefGoogle Scholar
Holmes, K.L. & Lantz, L.M. (2001). Protein labeling with fluorescent probes. Methods Cell Biol 63, 185204.CrossRefGoogle ScholarPubMed
Horowitz, P.M. & Bowman, S. (1987). Ion-enhanced fluorescence staining of sodium dodecyl sulfate-polyacrylamide gels using bis(8-p-toluidino-1-naphthalenesulfonate). Anal Biochem 165, 430434.CrossRefGoogle ScholarPubMed
James, J. & Tas, J. (1984). Histochemical protein staining methods. In Microscopy Handbooks Vol. 4. Oxford, UK: Royal Microscopical Society, Oxford University Press.Google Scholar
Jiney, J. & Burgess, K. (2006). Benzophenoxazine-based fluorescent dyes for labeling biomolecules. Tetrahedron 62, 1102111037.Google Scholar
Johnson, I.D., Kang, H.C. & Haugland, R.P. (1991). Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorophores. Anal Biochem 198, 228237.CrossRefGoogle ScholarPubMed
Johnson, M. & Packard, E. (1971). Methods used for identification of binding media in Italian paintings. Studies in Conservation 16, 145164.CrossRefGoogle Scholar
Jones, P.L. (1962). Some observations on methods for identifying proteins in paint media. Stud Conserv 7, 1016.CrossRefGoogle Scholar
Karpowicz, A. (1981). Ageing and deterioration of proteinaceous media. Stud Conserv 26, 153160.CrossRefGoogle Scholar
Kay, R.E., Walwick, E.R. & Gifford, C.K. (1964). Spectral changes in a cationic dye due to interaction with macromolecules. I. Behaviour of dye alone in solution and the effect of added macromolecules. J Phys Chem 68(7), 18961916.CrossRefGoogle Scholar
Khandekar, N. (2003). Preparation of cross-sections from easel-paintings. Stud Conserv 48(Suppl 1), 5264.CrossRefGoogle Scholar
Klinkner, A.M., Bugelski, P.J., Robbie Waites, C., Louden, C., Hart, T.K. & Kerns, W.D. (1997). A novel technique for mapping the lipid composition of atherosclerotic fatty streaks by en face fluorescence microscopy. J Histochem Cytochem 45(5), 743753.CrossRefGoogle ScholarPubMed
Kockaert, L, Gausset, P. & Dubi-Rucquory, M. (1989). Detection of ovalbumin in paint media by immunofluorescence. Stud Conserv 34, 183188.CrossRefGoogle Scholar
Koopman, R., Schaart, G. & Hesselink, M.K.C. (2001). Optimisation of Oil Red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochem Cell Biol 116, 6368.CrossRefGoogle ScholarPubMed
Kühn, H. (1986). Conservation and Restoration of Works of Art and Antiquities, vol 1, pp. 157167. London: Butterworths.Google Scholar
Laaser, T., Stoppa, K. & Krekel, C. (2011). Making consolidation visible: Examination of hydroxy propylcellulose migration during consolidation of a painted wallpaper using a fluorescent-labeled consolidant. In The Sticking Point: Adhesives and Consolidants in Paintings Conservation Icon Paintings Group Conference, May 6, 2011. London: National Portrait Gallery.Google Scholar
Maeda, H., Ishida, N., Kawauchi, H. & Tuzimura, K. (1969). Reaction of FITC with proteins and amino acids. J Biochem 65(5), 777783.CrossRefGoogle Scholar
Martin, E. (1975). Note sur l'identification des proteines dans les liants de peinture. In Annales du Laboratoire de Recherche des Musées de France, pp. 5760.Google Scholar
Martin, E. (1977). Some improvements in the techniques of analysis of paint media. Stud Conserv 22, 6367.CrossRefGoogle Scholar
Martin, E. (1978). Application des tests sur coupes minces á 1'identification des emulsions dans les liants de peinture. In Annales du Laboratoire de Recherche des Musées de France, pp. 2329.Google Scholar
Martin, J.S. (1994). Microscopic examination and analysis of the structure and composition of paint and varnish layers. In Painted Wood: History and Conservation, Proceedings of the Symposium Organized by the Wooden Artifacts Group of the American Institute for Conservation of Historic and Artistic Works. pp. 6475. Los Angeles, CA: The Getty Conservation Institute.Google Scholar
Masschelein Kleiner, L. (1992). Liants, vernis et adhesifs anciens. Brussels, Belgium: Bruxelles Institut Royal du patrimoine artistique KIK-IRPA.Google Scholar
Matteini, M. & Moles, A. (1984). Scienza e restauro. Metodi di indagine. Florence, Italy: Nardini Editore.Google Scholar
Matteini, M. & Moles, A. (2002). La Chimica nel Restauro. I materiali dell'arte pittorica. Florence, Italy: Nardini Editore.Google Scholar
Matteini, M., Moles, A. & Tosini, I. (1981). Topochemical reactions for the recognition of oil media in paint fragments. In ICOM-CC Triennial Meeting Proceedings, Ottawa, Canada.Google Scholar
Messinger, J.M. (1992). Ultraviolet-fluorescence microscopy of paint cross-sections. J Am Inst Conservation 31(3), 267274.CrossRefGoogle Scholar
Mills, J.S. & White, R. (1979). Analysis of paint media. National Gallery Technical Bulletin 3, 6667.Google Scholar
Mills, J.S. & White, R. (1994). The Organic Chemistry of Museum Objects, 2nd ed. London: Butterworth-Heinemann.Google Scholar
Moles, A., Matteini, M. & Tosini, I. (1982). Le tecniche microanalitiche condotte su sezioni. In Metodo e Scienza—Operativitá e ricerca nel restauro, pp. 271273. Florence, Italy: Sansoni Editore.Google Scholar
Nairn, R.C. (Ed.) (1962). Fluorescent Protein Tracing. Edinburgh: Livingstone.Google Scholar
Osmond, G. (1993). Accelerated deterioration of artists' oil paints: An assessment involving ultraviolet fluorescence spectroscopy. In 10th Triennial Meeting ICOM Committee for Conservation, preprints, Bridgland, J. (Ed.). London: James and James.Google Scholar
Patton, W.F. (2002). Detection technologies in proteome analysis. J Chromatogr B 771, 331.CrossRefGoogle ScholarPubMed
Petraco, N. & Kubic, T. (2004). Color Atlas and Manual of Microscopy for Criminalists, Chemists and Conservators. Boca Raton, London, New York, Washington, D.C.: CRC Press.Google Scholar
Petty, H.R. (2007). Fluorescence microscopy: Established and emerging methods, experimental strategies, and applications in immunology. Microsc Res Tech 70, 687709.CrossRefGoogle Scholar
Phenix, A. (1997). The composition and chemistry of eggs and egg tempera. In Early Italian Paintings: Techniques and Analysis: Symposium, Bakkenist, T., Hoppenbrouwers, R. & Dubois, H. (Eds.), pp. 1112. Maastricht, The Netherlands: Limburg Conservation Institute.Google Scholar
Pilc, J. & White, R. (1995). The application of FTIR-microscopy to the analysis of paint binders in easel paintings. National Gallery Technical Bulletin 16, 7384.Google Scholar
Pinna, D., Galeotti, M. & Mazzeo, R. (Eds.). (2009). Scientific Examination for the Investigation of Paintings: A Handbook for Conservators-Restorers. Florence, Italy: Centro Di.Google Scholar
Plesters, J. (1956). Cross-sections and chemical analysis of paint samples. Stud Conserv 2(3), 110157.CrossRefGoogle Scholar
Ploem, J.S. & Tanke, H.J. (1987). Introduction to Fluorescence Microscopy. Oxford, UK: Oxford University Press, Royal Microscopical Society.Google Scholar
Ramirez-Barat, B. & de la Vina, S. (2001). Characterization of proteins in paint media by immunofluorescence. A note on methodological aspects. Stud Conserv 46(4), 282288.Google Scholar
Rinuy, A. & Gros, L. (1989). Liants dans les peintures anciennes: Methodes d'identification et Etude du vieillissement. Zeitschrift für Kunstechnologie und Konservierung, Heft 1, Jahrgang, 3, 939.Google Scholar
Rosi, F., Federici, A., Brunetti, B.G., Sgamellotti, A., Clementi, S. & Miliani, C. (2011). Multivariate chemical mapping of pigments and binders in easel painting cross-sections by micro IR reflection spectroscopy. Anal Bioanal Chem 399(9), 31333145.CrossRefGoogle ScholarPubMed
Sandu, I.C.A., Bracci, S., Lobefaro, M. & Sandu, I. (2010). Integrated methodology for the evaluation of cleaning effectiveness in two Russian icons (16th–17th centuries). Microsc Res Tech 73, 752760.CrossRefGoogle ScholarPubMed
Sandu, I.C.A., Bracci, S. & Sandu, I. (2006). Instrumental analyses used in the authentication of old paintings. I. Comparison between two icons of XIXth century. Rev de Chim (Bucharest) 57(7), 796802.Google Scholar
Sandu, I.C.A., Bracci, S., Sandu, I. & Lobefaro, M. (2009a). Integrated analytical study for the authentication of five Russian icons (16th–17th centuries). Microsc Res Tech 72, 755765.CrossRefGoogle Scholar
Sandu, I.C.A., Luca, C., Sandu, I., Vasilache, V. & Hayashi, M. (2008). Authentication of ancient easel-paintings through materials identification from polychrome layers. III. Cross-section analysis and staining tests. Rev de Chim (Bucharest) 59(8), 785793.CrossRefGoogle Scholar
Sandu, I.C.A., Roque, A.C.A, Kuckova, S., Schäfer, S. & Carreira, R. (2009b). The biochemistry and artistic studies: A novel integrated approach to the identification of organic binders in polychrome artifacts, in the first issue of ECR. Estudos de Conservação e Restauro, pp. 3956. Oporto, Portugal: CITAR Escola das Artes, Universidade Católica Portuguesa.Google Scholar
Sandu, I.C.A., Roque, A.C.A., Matteini, P., Schäfer, S., Agati, G., Ribeiro Correia, C. & Fortio Fernandes Pacheco, J. (2012). Fluorescence recognition of proteinaceous binders in works of art by a novel integrated system of investigation. Microsc Res Tech 75(3), 316324.CrossRefGoogle Scholar
Sandu, I.C.A, Sandu, I. & Luca, C. (2005). Modern Aspects Concerning the Conservation of the Cultural Heritage. Vol. II. Authentication and Determination of the Preservation State of Ancient Paintings. Iasi, Romania: Performantica.Google Scholar
Schäfer, S. (1997). Fluorescent staining techniques for the characterization of binding media within paint cross sections and digital image processing for the quantification of staining results. In Postprints of the Symposium on Early Italian Painting Techniques and Analysis, Bakkenist, T., Hoppenbrouwers, R. & Dubois, H. (Eds.). Maastricht, The Netherlands: Limburg Conservation Institute.Google Scholar
Sciutto, G., Dolci, L.S., Buragina, A., Prati, S., Guardigli, M., Mazzeo, R. & Roda, A. (2011). Development of a multiplexed chemiluminescent immunochemical imaging technique for the simultaneous localization of different proteins in painting micro cross-sections. Anal Bioanal Chem 399, 28892897.CrossRefGoogle ScholarPubMed
Siegel, A.B.G. (1993). Computer enhanced UV fluorescence microscopy on aged artists' materials. Art Conservation Training Conference, Buffalo, NY. Google Scholar
Slansky, B. (1956). Technika v malirske tvorbe (Technique in Painting Creation. Classical book about painting and restoring materials. Pigmentation, thinners, grounds of paintings and fresco). Prague: Paseka.Google Scholar
Spring, K.R. & Davidson, M.W. (2008). Introduction to fluorescence microscopy. Nikon MicroscopyU. Available at http://www.microscopyu.com/articles/fluorescence/fluorescenceintro.html (retrieved 2008-09-28).Google Scholar
Spring, M. (1991). A study of staining techniques for the identification of proteinaceous paint media. Unpublished bachelor thesis. London: Cambridge University, Hamilton Kerr Institute. Google Scholar
Steinberg, T.H., Haugland, R.P. & Singer, V. (1996). Applications of SYPRO Orange and SYPRO Red protein gel stains. Anal Biochem 239(2), 238245.CrossRefGoogle ScholarPubMed
Sun, C., Yang, J., Li, L., Wu, X., Liu, Y. & Liu, S. (2004). Advances in the study of luminescence probes for proteins, J Chromatogr B 803, 173190.CrossRefGoogle Scholar
Talbot, R.R. (1982). The fluorescent antibody technique in the identification of proteinaceous materials. In Third Annual Conference of Art Conservation Training Programs, Queens University, Kingston, Ontario.Google Scholar
Tsang, J. & Cunningham, R. (1991). Some improvements in the study of cross-sections. J Am Inst Conserv 30, 163177.CrossRefGoogle Scholar
Udenfriend, S., Stein, S., Böhlen, P., Dairman, W., Leimgruber, W. & Weigele, M. (1972). Fluorescamine: A reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science 178, 871872.CrossRefGoogle ScholarPubMed
Vagnini, N., Pitzurra, L., Cartechini, L., Miliani, C., Brunetti, B.G. & Sgamelotti, A. (2008). Identification of proteins in painting cross-sections by immunofluorescence microscopy. Anal Bioanal Chem 392, 5764.CrossRefGoogle ScholarPubMed
Van Staveren, H.J., Speelman, O.C., Witjes, M.J., Cincotta, L. & Star, W.M. (2001). Fluorescence imaging and spectroscopy of ethyl Nile blue A in animal models of (pre)malignancies. Photochem Photobiol 73(1), 3238.2.0.CO;2>CrossRefGoogle ScholarPubMed
Wachowiak, M.J. Jr. (2004). Efficient new methods for embedding paint and varnish samples for microscopy. J Am Inst Conserv 43(3), 205226.CrossRefGoogle Scholar
Waentig, F. (1993). Gießharzsysteme zum Einbetten von Proben. Restauro 3, 195199.Google Scholar
Wang, F., Tan, W.B., Zhang, Y., Fan, X. & Wang, M.Q. (2006). Luminescent nanomaterials for biological labeling. Nanotechnology 17, R1. Google Scholar
Wang, F., Tan, W.B., Zhang, Y., Fan, X. & Wang, M. (2010). Luminescent nanomaterials for biological labeling. Nanotechnology 17(1), R1R13.CrossRefGoogle Scholar
White, R. (1984). The characterisation of proteinaceous binders in art objects. National Gallery Technical Bulletin 8, 514.Google Scholar
Wild, D. (2005). The Immunoassay Book, 3rd ed. Amsterdam, The Netherlands: Elsevier.Google Scholar
Wolbers, R.C. (2000). Cleaning Painted Surfaces. Aqueous Methods. London: Archetype Publications.Google Scholar
Wolbers, R.C. (1990). Microscopy—Interpreting Stains (Notes for workshop on new methods in the cleaning of paintings). Marina del Rey, CA: Getty Conservation Institute.Google Scholar
Wolbers, R.C. & Landrey, G. (1987). The use of direct reactive fluorescent dyes for the characterization of binding media in cross sectional examinations. In Preprints of 15th Annual Meeting of American Institute for Conservation, Washington, D.C., pp. 168202.Google Scholar