Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T14:44:25.471Z Has data issue: false hasContentIssue false

Comprehensive Comparison of Various Techniques for the Analysis of Elemental Distributions in Thin Films: Additional Techniques

Published online by Cambridge University Press:  14 September 2015

Daniel Abou-Ras*
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Raquel Caballero
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Cornelia Streeck
Affiliation:
Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany
Burkhard Beckhoff
Affiliation:
Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany
Jung-Hwan In
Affiliation:
School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea
Sungho Jeong
Affiliation:
School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea
*
*Corresponding author. [email protected]
Get access

Abstract

In a recent publication by Abou-Ras et al., various techniques for the analysis of elemental distribution in thin films were compared, using the example of a 2-µm thick Cu(In,Ga)Se2 thin film applied as an absorber material in a solar cell. The authors of this work found that similar relative Ga distributions perpendicular to the substrate across the Cu(In,Ga)Se2 thin film were determined by 18 different techniques, applied on samples from the same identical deposition run. Their spatial and depth resolutions, their measuring speeds, their availabilities, as well as their detection limits were discussed. The present work adds two further techniques to this comparison: laser-induced breakdown spectroscopy and grazing-incidence X-ray fluorescence analysis.

Type
Equipment and Techniques Development
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Universidad Autónoma de Madrid, Departamento de Física Aplicada, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain

References

Abou-Ras, D., Caballero, R., Fischer, C.H., Kaufmann, C.A., Lauermann, I., Mainz, R., Moenig, H., Schoepke, A., Stephan, C., Streeck, C., Schorr, S., Eicke, A., Doebeli, M., Gade, B., Hinrichs, J., Nunney, T., Dijkstra, H., Hoffmann, V., Klemm, D., Efimova, V., Bergmaier, A., Dollinger, G., Wirth, T., Unger, W., Rockett, A.A., Perez-Rodriguez, A., Alvarez-Garcia, J., Izquierdo-Roca, V., Schmid, T., Choi, P.P., Mueller, M., Bertram, F., Christen, J., Khatri, H., Collins, R.W., Marsillac, S. & Koetschau, I. (2011). Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films. Microsc Microanal 17, 728751.CrossRefGoogle ScholarPubMed
Beckhoff, B (2008). Reference-free X-ray spectrometry based on metrology using synchrotron radiation. J Anal At Spectrom 23, 845853.Google Scholar
Beckhoff, B., Fliegauf, R., Kolbe, M., Müller, M., Weser, J. & Ulm, G. (2007). Reference-free total reflection X-ray fluorescence analysis of semiconductor surfaces with synchrotron radiation. Anal Chem 79, 78737882.Google Scholar
Beckhoff, B., Gottwald, A., Klein, R., Krumrey, M., Müller, R., Richter, M., Scholze, F., Thornagel, R. & Ulm, G. (2009). A quarter century of metrology using synchrotron radiation by PTB in Berlin. Phys Status Solidi B 246, 14151434.Google Scholar
Hönicke, P., Kolbe, M., Müller, M., Mantler, M., Krämer, M. & Beckhoff, B. (2014). Experimental verification of the individual energy dependencies of the partial L-shell photoionization cross sections of Pd and Mo. Phys Rev Lett 113, 163001.Google Scholar
In, J.H., Kim, C.K., Lee, S.H. & Jeong, S. (2013 a). Reproducibility of CIGS thin film analysis by laser-induced breakdown spectroscopy. J Anal At Spectrom 28, 473481.CrossRefGoogle Scholar
In, J.H., Kim, C.K., Lee, S.H., Shim, H.S. & Jeong, S. (2013 b). Quantitative analysis of CuIn1-xGaxSe2 thin films with fluctuation of operational parameters using laser-induced breakdown spectroscopy. J Anal At Spectrom 28, 890900.Google Scholar
Kim, C.K., In, J.H., Lee, S.H. & Jeong, S. (2013). Independence of elemental intensity ratio on plasma property during laser-induced breakdown spectroscopy. Opt Lett 38, 30323035.Google Scholar
Krumrey, M. & Ulm, G. (2001). High-accuracy detector calibration at the PTB four-crystal monochromator beamline. Nucl Instrum Methods A 467–468, 11751178.CrossRefGoogle Scholar
Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11, 431441.Google Scholar
Müller, M., Beckhoff, B., Ulm, G. & Kanngiesser, B. (2006). Absolute determination of cross sections for resonant Raman scattering on silicon. Phys Rev A 74, 012702.Google Scholar
Scholze, F. & Procop, M. (2009). Modelling the response function of energy dispersive X-ray spectrometers with silicon detectors. X-Ray Spectrom 38, 312321.Google Scholar
St-Onge, L. & Sabsabi, M. (2000). Towards quantitative depth-profile analysis using laser-induced plasma spectroscopy: Investigation of galvannealed coatings on steel. Spectrochim Acta Part B 55, 299308.Google Scholar
Streeck, C., Beckhoff, B., Reinhardt, F., Kolbe, M., Kanngiesser, B. & Kaufmann, C.A. (2010). Elemental depth profiling of Cu(In,Ga)Se2 thin films by reference-free grazing incidence X-ray fluorescence analysis. Nucl Instrum Methods B 268, 277281.CrossRefGoogle Scholar
Streeck, C., Brunken, S., Gerlach, M., Herzog, C., Hönicke, P., Kaufmann, C.A., Lubeck, J., Pollakowski, B., Unterumsberger, R., Weber, A., Beckhoff, B., Kanngießer, B., Schock, H.-W. & Mainz, R. (2013). Grazing-incidence X-ray fluorescence analysis for non-destructive determination of In and Ga depth profiles in Cu(In,Ga)Se2 absorber films. Appl Phys Lett 103, 1139041–4.Google Scholar
Zschornack, G (2007). Handbook of X-Ray Data. Berlin, Heidelberg: Springer-Verlag.Google Scholar