No CrossRef data available.
Published online by Cambridge University Press: 02 July 2020
Titanium nitride (TiN) films are used as anti-reflection coatings (ARC) on aluminum (Al) films to facilitate lithography processes during multilevel metallization for the manufacture of integrated circuits on silicon-based (Si) semiconductor devices. It is generally accepted in the literature that the microstructure of multilevel metal stacks is influenced by the texture of the substrate. For the case of interconnect materials used in the semiconductor industry, a typical metal stack is as follows: Titanium/Titanium Nitride/Al-alloy/ARC-Titanium Nitride. The Ti/TiN layer underneath the Al-alloy film is used as a barrier stack to prevent junction spiking. The Ti/TiN underlayer also determines the growth conditions (crystallography and orientation relationships) of the subsequent Al-alloy film.
This study focuses on the microstructural characterization of the ARC-TiN layer on Si-oxide and Ti/TiN/Al-alloy substrates that are fabricated under similar conditions using conventional physical vapor deposition (PVD - sputtering) techniques. The ARC-TiN microstructure was investigated by transmission electron microscopy (TEM) using a Philips EM430 operating at 300 kV.