Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T13:59:18.541Z Has data issue: false hasContentIssue false

Comparative Study of Nanoscale Surface Structures of Calcite Microcrystals Using FE-SEM, AFM, and TEM

Published online by Cambridge University Press:  30 May 2006

Yung-Ching Chien
Affiliation:
Department of Earth and Planetary Sciences, McGill University, Montréal, Québec H3A 2A7, Canada
Alfonso Mucci
Affiliation:
Department of Earth and Planetary Sciences, McGill University, Montréal, Québec H3A 2A7, Canada
Jeanne Paquette
Affiliation:
Department of Earth and Planetary Sciences, McGill University, Montréal, Québec H3A 2A7, Canada
S. Kelly Sears
Affiliation:
Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 2B2, Canada Facility for Electron Microscopy Research, McGill University, Montréal, Québec H3A 2B2, Canada
Hojatollah Vali
Affiliation:
Department of Earth and Planetary Sciences, McGill University, Montréal, Québec H3A 2A7, Canada Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 2B2, Canada Facility for Electron Microscopy Research, McGill University, Montréal, Québec H3A 2B2, Canada
Get access

Abstract

The bulk morphology and surface features that developed upon precipitation on micrometer-size calcite powders and millimeter-size cleavage fragments were imaged by three different microscopic techniques: field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) of Pt-C replicas, and atomic force microscopy (AFM). Each technique can resolve some nanoscale surface features, but they offer different ranges of magnification and dimensional resolutions. Because sample preparation and imaging is not constrained by crystal orientation, FE-SEM and TEM of Pt-C replicas are best suited to image the overall morphology of microcrystals. However, owing to the decoration effect of Pt-C on the crystal faces, TEM of Pt-C replicas is superior at resolving nanoscale surface structures, including the development of new faces and the different microtopography among nonequivalent faces in microcrystals, which cannot be revealed by FE-SEM. In conjunction with SEM, Pt-C replica provides the evidence that crystals grow in diverse and face-specific modes. The TEM imaging of Pt-C replicas has nanoscale resolution comparable to AFM. AFM yielded quantitative information (e.g., crystallographic orientation and height of steps) of microtopographic features. In contrast to Pt-C replicas and SEM providing three-dimensional images of the crystals, AFM can only image one individual cleavage or flat surface at a time.

Type
MATERIALS APPLICATIONS
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aizenberg, J., Albeck, S., Weiner, S., & Addadi, L. (1994). Crystal–protein interactions studied by overgrowth of calcite on biogenic skeletal elements. J Crystal Growth 142, 156164.CrossRefGoogle Scholar
Albeck, S., Aizenberg, J., Addadi, L., & Weiner, S. (1993). Interactions of various skeletal intracrystalline components with calcite crystals. J Am Chem Soc 115, 1169111697.CrossRefGoogle Scholar
Baronnet, A. (1992). Polytypism and stacking disorder. In Mineral and Reactions at the Atomic Scale: Transmission Electron Microscopy, Buseck, P.R. (Ed.), Rev. Mineral., Vol. 27, pp. 258261. Washington, DC: Mineralogical Society of America.Google Scholar
Bethge, H. & Heydenreich, J. (1987). Electron Microscopy in Solid State Physics. Amsterdam: Elsevier.Google Scholar
Bosbach, D., Hall, C., & Putnis, A. (1998). Mineral precipitation and dissolution in aqueous solution: In-situ microscopic observations on barite (001) with atomic force microscopy. Chem Geol 151, 143160.CrossRefGoogle Scholar
Bosbach, D., Jordan, G., & Rammensee, W. (1995). Crystal growth and dissolution kinetics of gypsum and fluorite: An in-situ scanning force microscope study. Eur J Mineral 7, 267278.CrossRefGoogle Scholar
Bozzola, J.J. & Russell, L.D. (1992). Specimen staining and contrast methods for transmission electron microscopy. In Electron Microscopy, pp. 108133. Boston: Jones and Bartlett Publishers.Google Scholar
Busenberg, E. & Plummer, L.N. (1989). Thermodynamics of magnesium calcite solid-solutions at 25°C and 1 atm total pressure. Geochim Cosmochim Acta 53, 11891208.CrossRefGoogle Scholar
Castle, J.E. & Zhdan, P.A. (1997). Characterization of surface topography by SEM and SFM: Problems and solutions. J Phys D Appl Phys 30, 722740.CrossRefGoogle Scholar
Chen, H., Banaszak Holl, M., Orr, B.G., Majoros, I., & Clarkson, B.H. (2003). Interaction of dendrimers (artificial proteins) with biological hydroxyapatite crystals. J Dent Res 82, 443448.CrossRefGoogle Scholar
Davis, K. J., Dove, P. M., & DeYoreo, J. J. (2000). The role of Mg2+ as an impurity in calcite growth. Science 290, 11341137.CrossRefGoogle Scholar
de Kanel, J. & Morse, J.W. (1979). A simple technique for surface area determination. J Phys E Sci Instrum 12, 272273.CrossRefGoogle Scholar
Dove, P.M. & Hochella, M.F., Jr. (1993). Calcite precipitation mechanisms and inhibition by orthophosphate: In situ observations by scanning force microscopy. Geochim Cosmochim Acta 57, 705714.CrossRefGoogle Scholar
Eggleston, C.M. (1994). High-resolution scanning probe microscopy: Tip-surface interaction, artifacts, and applications in mineralogy and geochemistry. In Scanning Probe Microscopy of Clay Minerals, Nagy, K.R. & Blum, A.E. (Eds.), Clay Minerals Society (CMS) Workshop Lectures, Vol. 7, pp. 190. Chantilly, VA: The Clay Minerals Society.CrossRefGoogle Scholar
Folk, R. (1974). The natural history of crystalline calcium carbonate: Effect of magnesium content and salinity. J Sediment Petrol 44, 4053.Google Scholar
Friedbacher, G., Hansma, P.K., Ramli, E., & Stucky, G.D. (1991). Imaging powders with the atomic force microscope: From biominerals to commercial materials. Science 253, 12611263.CrossRefGoogle Scholar
Geil, P.H., Yang, J., Williams, R.A., Petersen, K.L., Long, T.-C., & Xu, P. (2005). Effect of molecular weight and melt time and temperature on the morphology of poly(tetrafluorethylene). Adv Polym Sci 180, 89159.CrossRefGoogle Scholar
Gonzalez, L.A., Carpenter, S.J., & Lohmann, K.C. (1992). Inorganic calcite morphology: Roles of fluid chemistry and fluid flow. J Sediment Petrol 62, 382399.Google Scholar
Grantham, M.C. & Dove, P.M. (1996). Bacterial-mineral surface interactions: Investigations using fluid tapping mode atomic force microscopy. Geochim Cosmochim Acta 60, 24732480.CrossRefGoogle Scholar
Gratz, A.J. & Hillner, P.E. (1993). Poisoning of calcite growth viewed in the atomic force microscope (AFM). J Crystal Growth 129, 789793.CrossRefGoogle Scholar
Gratz, A.J., Hillner, P.E., & Hansma, P.K. (1993). Step dynamics and spiral growth on calcite. Geochim Cosmochim Acta 57, 491495.CrossRefGoogle Scholar
Han, Y.J. & Aizenberg, J. (2003). Face-selective nucleation of calcite on self-assembled monolayers of alkanethiols: Effect of the parity of the alkyl chain. Angew Chem Int Ed Engl 42, 36683670.CrossRefGoogle Scholar
Heijnen, W.M.M. (1985). The morphology of gel grown calcite. N Jb Miner Mh 8, 357371.Google Scholar
Land, T.A., Martin, T.L., Potapenko, S., Palmore, G.T., & De Yoreo, J.J. (1999). Recovery of surfaces from impurity poisoning during crystal growth. Nature 399, 442445.CrossRefGoogle Scholar
Lasaga, A.C. (1998). Theory of crystal growth and dissolution. In Kinetic Theory in the Earth Sciences, pp. 581712. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Lemoine, P., Lamberton, R.W., Ogwu, A.A., Zhao, J.F., Maguire, P., & McLaughlin, J. (1999). Complementary analysis techniques for the morphological study of ultrathin amorphous carbon films. J Appl Phys 86, 65646570.CrossRefGoogle Scholar
Mann, S., Didymus, J.M., Sanderson, N.P., & Heywood, B.R. (1990). Morphological influence of functionalized and non-functionalized α,ω-dicarboxylates on calcite crystallization. J Chem Soc Faraday Trans 86, 18731880.CrossRefGoogle Scholar
Meldrum, F.C. & Hyde, S.T. (2001). Morphological influence of magnesium and organic additives on the precipitation of calcite. J Crystal Growth 231, 544558.CrossRefGoogle Scholar
Millero, F.J. (1974). The physical chemistry of seawater. Ann Rev Earth Planet Sci Lett 2, 101105.CrossRefGoogle Scholar
Mucci, A. (1986). Growth kinetics and composition of magnesium calcite overgrowths precipitated from seawater: Quantitative influence of orthophosphate ions. Geochim Cosmochim Acta 50, 22552265.CrossRefGoogle Scholar
Mucci, A. & Morse, J.W. (1983). The incorporation of Mg2+ and Sr2+ into calcite overgrowths: Influences of growth rate and solution composition. Geochim Cosmochim Acta 47, 217233.CrossRefGoogle Scholar
Nagy, K.L., Cygan, R.T., Hanchar, J.M., & Sturchio, N.C. (1999). Gibbsite growth kinetics on gibbsite, kaolinite, and muscovite substrates: Atomic force microscopy evidence for epitaxy and an assessment of reactive surface area. Geochim Cosmochim Acta 63, 23372351.CrossRefGoogle Scholar
Orme, C.A., Noy, A., Wierzbicki, A., McBride, M.T., Grantham, M., Teng, H.H., Dove, P.M., & DeYoreo, J.J. (2001). Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775778.CrossRefGoogle Scholar
Paquette, J., Vali, H., & Mountjoy, E.W. (1999). Novel TEM approaches to imaging of microstructures in carbonates: Clues to growth mechanisms in calcite and dolomite. Am Mineral 84, 19391949.CrossRefGoogle Scholar
Paquette, J., Vali, H., & Mucci, A. (1996). TEM study of Pt-C replicas of calcite overgrowths precipitated from electrolyte solutions. Geochim Cosmochim Acta 60, 46894699.CrossRefGoogle Scholar
Pina, C.M., Becker, U., Risthaus, P., Bosbach, D., & Putnis, A. (1998a). Molecular-scale mechanisms of crystal growth in barite. Nature 395, 483486.CrossRefGoogle Scholar
Pina, C.M., Bosbach, D., Prieto, M., & Putnis, A. (1998b). Microtopography of the barite (001) face during growth: AFM observations and PBC theory. J Cryst Growth 187, 119125.CrossRefGoogle Scholar
Qiu, S.R., Wierzbicki, A., Orme, C.A., Cody, A.M., Hoyer, J.R., Nancollas, G.H., Zepeda, S., & De Yoreo, J.J. (2004). Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci USA 101, 18111815.CrossRefGoogle Scholar
Ross, M.D. & Pote, K.G. (1984). Some properties of otoconia. Phil Trans Roy Soc Lond B Biol Sci 304, 445452.Google Scholar
Singjai, P., Songmee, N., Tunkasiri, T., & Vilaithong, T. (2002). Atomic force microscopy imaging and cutting of beaded carbon nanotubes deposited on glass. Surf Interface Anal 33, 900904.CrossRefGoogle Scholar
Stack, A.G., Higgins, S.R., & Eggleston, C.M. (2001). Point of zero charge of a corundum-water interface probed with optical second harmonic generation (SHG) and atomic force microscopy (AFM): New approaches to oxide surface charge. Geochim Cosmochim Acta 65, 30553063.CrossRefGoogle Scholar
Teng, H.H., Dove, P.M., & De Yoreo, J.J. (1999). Reversed calcium carbonate morphologies induced by controlling microscopic growth kinetics: Insight into biomineralization. Geochim Cosmochim Acta 63, 25072512.CrossRefGoogle Scholar
Teng, H.H., Dove, P.M., & De Yoreo, J.J. (2000). Kinetics of calcite growth: Analysis of surface processes and relationships to macroscopic rate laws. Geochim Cosmochim Acta 64, 22552266.CrossRefGoogle Scholar
Teng, H.H., Dove, P.M., Orme, C., & De Yoreo, J.J. (1998). The thermodynamics of calcite growth: A baseline for understanding biomineral formation. Science 282, 724727.CrossRefGoogle Scholar
Vali, H., Allahverdi, M., & Drew, R.A.L. (1996). TEM study of the surface morphology of extracted ZrO2-Al2O3 fibers. J Mater Sci 31, 61776184.CrossRefGoogle Scholar
Vali, H. & Bachmann, L. (1988). Ultrastructure and flow behavior of colloidal smectite dispersions. J Colloid Interface Sci 126, 278291.CrossRefGoogle Scholar
Wang, B., Li, C.Y., Cheng, S.Z.D., Geil, P.H., Grebowicz, J., & Ho, R.-M. (2001). Poly(trimethylene terephthalate) crystal structure and morphology in different length scales. Polymer 42, 71717180.CrossRefGoogle Scholar
Wang, R. Z., Addadi, L., & Weiner, S. (1997). Design strategies of sea urchin teeth: Structure, composition and micromechanical relations to function. Phil Trans Roy Soc Lond B Biol Sci 352, 469480.CrossRefGoogle Scholar
Yang, J., Sidoti, G., Liu, J., Geil, P.H., Li, C.Y., & Cheng, S.Z.D. (2001). Morphology and crystal structure of CTFMP and bulk polymerized poly(trimethylene terephthalate). Polymer 42, 71817195.CrossRefGoogle Scholar
Zeile, U. (2000). Fundamentals of cryo preparation and replica technique. 7th Asia-Pacific Electron Microscopy Conference, pp. 342357. Singapore: APEM.Google Scholar
Zhang, Y. & Dawe, R.A. (2000). Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology. Chem Geol 163, 129138.CrossRefGoogle Scholar