Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-08T04:46:16.388Z Has data issue: false hasContentIssue false

Colloidal Palladium Particles of Different Shapes for Electron Microscopy Labeling

Published online by Cambridge University Press:  24 December 2009

Daryl A. Meyer
Affiliation:
Department of Animal Sciences, University of Wisconsin, 1675 Observatory Dr., Madison, WI 53706-1284, USA
Julie A. Oliver
Affiliation:
Department of Animal Sciences, University of Wisconsin, 1675 Observatory Dr., Madison, WI 53706-1284, USA
Ralph M. Albrecht*
Affiliation:
Department of Animal Sciences, University of Wisconsin, 1675 Observatory Dr., Madison, WI 53706-1284, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The immunogold technique is a valuable method for labeling cellular macromolecules. However, multiple labeling using colloidal gold (cAu) nanoparticles of different sizes presents certain drawbacks; namely, as particle size increases, there is a decreased labeling efficiency and diminished spatial resolution with respect to the locations of labeled epitopes. Both concerns also limit the utility of heavy metal particles for comparative analysis of labeling densities. To minimize the variables due to differential labeling efficiencies, the best solution would be to conduct multiple labeling with particles of similar size. Consequently, some parameter other than size is necessary to distinguish each label type. In this study, we report the synthesis of colloidal palladium (cPd) nanoparticles of similar size but having two distinct shapes, umbonate and faceted, which are readily distinguishable from spherical colloidal gold particles. Their utility and fidelity as labels using a human platelet whole-mount model is also demonstrated.

Type
Biological Imaging: Techniques Development and Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albrecht, R.M., Goodman, S.L. & Simmons, S.R. (1989). Distribution and movement of membrane-associated platelet glycoproteins: Use of colloidal gold with correlative video-enhanced light microscopy, low-voltage high-resolution scanning electron microscopy, and high-voltage transmission electron microscopy. Am J Anat 185, 149164.CrossRefGoogle ScholarPubMed
Albrecht, R.M. & Meyer, D.A. (2008). Molecular labeling for correlative microscopy: LM, LVSEM, TEM, EF-TEM and HVEM. In Biological Low-Voltage Scanning Electron Microscopy, Schatten, H. & Pawley, J. (Eds.), pp. 171196. New York: Springer.CrossRefGoogle Scholar
Albrecht, R.M., Oliver, J.A. & Loftus, J.C. (1985). Observation of colloidal gold labeled platelet surface receptors and the underlying cytoskeleton. In The Science of Biological Specimen Preparation, Mueller, M., Becker, R.P., Boyde, A. & Wolosewick, J.J. (Eds.), pp. 185193. Chicago, IL: SEM, Inc.Google Scholar
Bleher, R., Kandela, I., Meyer, D.A. & Albrecht, R.M. (2008). Immuno-EM using colloidal metal nanoparticles and electron spectroscopic imaging for co-localization at high spatial resolution. J Microsc 230(3), 388395.CrossRefGoogle ScholarPubMed
Brintzinger, H. (1937). Ascorbinsäure und Isoascorbinsäure als Reduktionsmittel zur Herstellung kolloiddisperser Lösungen von Gold, Palladium, Platin, Silber, Selen, Tellur, Molybdänblau und Wolframblau. Kolloid Z 78(1), 2223.CrossRefGoogle Scholar
Faraday, M. (1857). The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philos T R Soc Lon 147, 145181.Google Scholar
Henglein, A. (2000). Colloidal palladium nanoparticles: Reduction of Pd(II) by H2; PdcoreAushellAgshell particles. J Phys Chem B 104, 66836685.Google Scholar
Kandela, I.K., Bleher, R. & Albrecht, R.M. (2007). Multiple correlative immunolabeling for light and electron microscopy using fluorophores and colloidal metal particles. J Histochem Cytochem 55(10), 989990.Google Scholar
Koeck, P.J.B., Schröder, R.R., Haider, M. & Leonard, K.R. (1996). Unconventional immuno double labelling by energy filtered transmission electron microscopy. Ultramicroscopy 62, 6578.CrossRefGoogle ScholarPubMed
Leunissen, J.L.M. & DeMay, J.R. (1989). Preparation of gold probes. In Immuno-Gold Labeling in Cell Biology, Verkleij, A.J. & Leunissen, J.L.M. (Eds.), pp. 911. Boca Raton, FL: CRC Press.Google Scholar
Loftus, J.C. & Albrecht, R.M. (1984). Redistribution of the fibrinogen receptor of human platelets following surface activation. J Cell Biol 99, 822829.CrossRefGoogle ScholarPubMed
Meyer, D.A. & Albrecht, R.M. (2000). Identification of multiple colloidal labels of various metallic composition by means of electron energy loss spectroscopy. Microsc Microanal 6(S2), 322323.Google Scholar
Meyer, D.A. & Albrecht, R.M. (2002a). Size selective synthesis of colloidal platinum nanoparticles for use as high resolution EM labels. Microsc Microanal 8(S2), 124125.CrossRefGoogle Scholar
Meyer, D.A. & Albrecht, R.M. (2002b). Multiple labeling for EM: Colloidal metal particles of different shapes and elemental compositions. In Proceedings of the 15th International Congress on Electron Microscopy, Vol. 2, Biology and Medicine, pp. 5354.Google Scholar
Meyer, D.A. & Albrecht, R.M. (2003). Sodium ascorbate method for the synthesis of colloidal palladium particles of different sizes. Microsc Microanal 9(S2), 11901191.CrossRefGoogle Scholar
Meyer, D.A., Bleher, R., Kandela, I.K., Oliver, J.A. & Albrecht, R.M. (2006). The development of alternative markers for transmission electron microscopy and correlative transmission and light microscopies. Microsc Microanal 12(S2), 3233.Google Scholar
Meyer, D.A., Oliver, J.A. & Albrecht, R.M. (2005). A method for the quadruple labeling of platelet surface epitopes for transmission electron microscopy. Microsc Microanal 11(S2), 142143.CrossRefGoogle Scholar
Olorundare, O.E., Simmons, S.R. & Albrecht, R.M. (1992). Cytochalasin D and E: Effects on fibrinogen receptor movement and cytoskeletal reorganization in fully spread, surface-activated platelets; a correlative light and electron microscopic investigation. Blood 79, 99109.CrossRefGoogle Scholar
Olorundare, O.E., Simmons, S.R. & Albrecht, R.M. (1993). Evidence for two mechanisms of ligand-receptor movement on surface-activated platelets. Eur J Cell Biol 60, 131145.Google Scholar
Petroski, J.M., Wang, Z.L., Green, T.C. & El-Sayed, M.A. (1998). Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B 102, 33163320.CrossRefGoogle Scholar
Phillips, D.R., Fitzgerald, L., Parise, L. & Steiner, B. (1992). Platelet membrane glycoprotein IIb-IIIa complex: Purification, characterization, and reconstitution into phospholipid vesicles. Method Enzymol 215, 244263.CrossRefGoogle ScholarPubMed
Simmons, S.R. & Albrecht, R.M. (1996a). Self-association of bound fibrinogen on platelet surfaces. J Lab Clin Med 128, 3950.CrossRefGoogle ScholarPubMed
Simmons, S.R. & Albrecht, R.M. (1996b). Low voltage, high resolution SEM of platelet-bound fibrinogen. Microsc Microanal 2(S2), 316317.Google Scholar
Simmons, S.R., Sims, P.A. & Albrecht, R.M. (1997). Receptor crosslinking triggers αIIβ3 redistribution. Arterioscl Throm Vas Biol 17, 33113320.CrossRefGoogle Scholar
Slot, J.W. & Geuze, H.J. (1981). Sizing of protein a-colloidal gold probes for immunoelectron microscopy. J Cell Biol 90, 533536.Google Scholar
Slot, J.W. & Geuze, H.J. (1985). A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol 38, 8793.Google ScholarPubMed
Walsh, P.N. & Griffin, J.H. (1981). Contributions of human platelets to the proteolytic activation of blood coagulation factors XII and XI. Blood 57(1), 106118.CrossRefGoogle Scholar
Wang, Z.L., Petroski, J.M., Green, T.C. & El-Sayed, M.A. (1998). Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J Phys Chem B 102, 61456151.CrossRefGoogle Scholar
Weiser, H.B. (1933). Inorganic Colloid Chemistry. Vol 1, The Colloidal Elements, pp. 2326. London: Chapman & Hall.Google Scholar
Wrigley, N.G. (1968). The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J Ultrastruct Res 24, 454464.CrossRefGoogle ScholarPubMed
Zsigmondy, R. (1909). Colloids and the Ultramicroscope, pp. 124128. New York: John Wiley & Sons.Google Scholar