Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T14:17:45.860Z Has data issue: false hasContentIssue false

Chromatic Aberrations in the Field Evaporation Behavior of Small Precipitates

Published online by Cambridge University Press:  06 November 2008

Emmanuelle A. Marquis*
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom Materials Physics Department, Sandia National Laboratories, Livermore, CA 94550, USA
Francois Vurpillot
Affiliation:
Groupe de Physique des Matériaux, UMR CNRS 6634, Institut des Matériaux de Rouen, 76801 Saint Etienne du Rouvray Cedex, France
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Artifacts in the field evaporation behavior of small precipitates have limited the accuracy of atom probe tomography analysis of clusters and precipitates smaller than 2 nm. Here, we report on specific observations of reconstruction artifacts that were obtained in case of precipitates with radii less than 10 nm in Al alloys, focusing particularly on a shift that appears in the relative positioning of matrix and precipitate atoms. We show that this chemically dependent behavior, referred to as “chromatic aberration,” is due to the electrostatic field above the emitter and the variations in field evaporation of the elements constituting the precipitates.

Type
Microanalysis
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bas, A.P., Bostel, A., Deconihout, B. & Blavette, D. (1995). General protocol for the reconstruction of 3D atom-probe data. Appl Surf Sci 87–88, 98304.Google Scholar
Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B. & Menand, A. (1993). An atom probe for three-dimensional tomography. Nature 363, 432435.CrossRefGoogle Scholar
Blavette, D., Sarrrau, J.M., Bostel, A. & Gallot, J. (1982). Direction and depth of atom probe analysis. Revue de Phys Appliquée 17, 435440.CrossRefGoogle Scholar
Blavette, D., Vurpillot, F., Pareige, P. & Menand, A. (2001). A model accounting for spatial overlaps in 3D atom-probe microscopy. Ultramicroscopy 89, 145153.CrossRefGoogle Scholar
Brandon, D.G. (1966a). On field evaporation. Phil Mag 14, 803820.CrossRefGoogle Scholar
Brandon, D.G. (1966b). The field evaporation of dilute alloys. Surf Sci 5, 137146.CrossRefGoogle Scholar
Camus, P.P., Larson, D.J. & Kelly, T.F. (1995). A method for reconstructing and locating atoms on the crystal lattice in three-dimensional atom probe data. Appl Surf Sci 87/88, 305310.CrossRefGoogle Scholar
Cerezo, A., Godfrey, T.J. & Smith, G.D.W. (1988). Application of a sensitive three-dimensional atom probe microscope. Rev Sci Instrum 59, 862866.CrossRefGoogle Scholar
De Geuser, F. (2006). Ph.D thesis, Université de Rouen, p. 60.Google Scholar
De Geuser, F., Lefebvre, W., Danoix, F., Vurpillot, F., Forbord, B. & Blavette, D. (2007). An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf Interf Anal 39, 268272.CrossRefGoogle Scholar
Ehrlich, G. (1966). Atomic processes at solid surfaces. Ann Rev Phys Chem 17, 295322.CrossRefGoogle Scholar
Engdahl, T., Hansen, V., Warren, P.J. & Stiller, K. (2002). Investigation of fine scale precipitates in Al-Zn-Mg alloys after various heat treatments. Mater Sci Eng A 327, 5964.CrossRefGoogle Scholar
Forbord, B., Lefebvre, W., Danoix, F., Hallem, H. & Marthinsen, K. (2004). Three dimensional atom probe investigation on the formation of Al-3(Sc,Zr)-dispersoids in aluminium alloys. Scripta Materialia 51, 333337.CrossRefGoogle Scholar
Ge, X.J., Chen, N.X., Zhang, W.Q. & Zhu, F.W. (1999). Selective field evaporation in field-ion microscopy for ordered alloys. J Appl Phys 85, 34883493.CrossRefGoogle Scholar
Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal 13, 437447.CrossRefGoogle ScholarPubMed
Gomer, R. (1961). Field Emission and Field Ionisation. Cambridge, MA: Harvard University Press.Google Scholar
Haydock, R. & Kingham, D.R. (1980). Post-ionization of field evaporated ions. Phys Rev Lett 44, 15201523.CrossRefGoogle Scholar
Hren, H. & Kellogg, G. (1984). Field-ion microscopy and field-ion mass spectrometry of sulfur (111) plane of nickel. Surf Sci 147, 349355.CrossRefGoogle Scholar
Hren, J.J. & Ranganathan, S. (1968). Field-Ion Microscopy. New York: Plenum Press.CrossRefGoogle Scholar
Hyde, J.M., Cerezo, A., Setna, R.P., Warren, P.J. & Smith, G.D.W. (1994). Lateral and depth scale calibration of the position-sensitive atom probe. Appl Surf Sci 75, 382391.CrossRefGoogle Scholar
Kellogg, G.L. (1994). Field-ion microscope studies of single atom surface diffusion and cluster nucleation on metal-surfaces. Surf Sci Rep 21, 188.CrossRefGoogle Scholar
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed laser-induced atom-probe mass-spectrometry. Ultramicroscopy 5, 259260.Google Scholar
Kelly, T.E., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D.R., Strennen, E.M., Oltman, E., Bunton, J.H. & Strait, D.R. (2004). First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10, 373383.CrossRefGoogle ScholarPubMed
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D. & Gorman, B.P. (2007). Atom probe tomography of electronic materials. Ann Rev Mater Res 37, 681727.CrossRefGoogle Scholar
Krishnaswamy, S.V., Martinka, M. & Mueller, E.W. (1977). Multilayer field evaporation patterns. Surf Sci 64, 2342.CrossRefGoogle Scholar
Marquis, E.A. (2007). A reassessment of the metastable miscibility gap in Al-Ag alloys by atom probe tomography. Microsc Microanal 13, 484492CrossRefGoogle ScholarPubMed
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford, U.K.: Oxford Science Publications, Clarendon Press Edition.CrossRefGoogle Scholar
Miller, M.K. & Hetherington, M.G. (1991). Local magnification effects in the atom probe. Surf Sci 246, 442449.CrossRefGoogle Scholar
Miller, M.K. & Smith, G.D.W. (1981). An atom probe study of the anomalous field evaporation of alloys containing silicon. J Vac Sci Technol 19(1), 5762.CrossRefGoogle Scholar
Moore, A.J.W. (1981). The simulation of FIM desorption patterns. Phil Mag A 43(3), 803814.CrossRefGoogle Scholar
Rose, D.J. (1956). On the magnification and resolution of the field electron emission microscope. J Appl Phys 27(3), 215220.CrossRefGoogle Scholar
Sha, G. & Cerezo, A. (2005). Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy. Ultramicroscopy 102, 151159.CrossRefGoogle ScholarPubMed
Tsong, T.T. (1978). Field ion image formation. Surf Sci 70, 211233.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76, 31273129.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A., Menand, A. & Blavette, D. (1999). Trajectories of field emitted ions in 3D atom-probe. Eur Phys J Appl Phys 6, 217221.CrossRefGoogle Scholar
Vurpillot, F., Renaud, L. & Blavette, D. (2003). A new step towards the lattice reconstruction in 3DAP. Ultramicroscopy 95, 223229.CrossRefGoogle ScholarPubMed
Wada, M. (1984). On the thermally activated evaporation of surface atoms. Surf Sci 145, 451465.CrossRefGoogle Scholar
Wang, S.C. & Tsong, T.T. (1982). Field and temperature dependence of the directional walk of single adsorbed W atoms on the W(110) plane. Phys Rev B 26, 64706477.CrossRefGoogle Scholar
Warren, P.J., Cerezo, A. & Smith, G.D.W. (1998). Observation of atomic planes in 3DAP analysis. Ultramicroscopy 73, 261266.CrossRefGoogle Scholar
Waugh, A.R., Boyes, E.D. & Southon, M.J. (1975). Field-desorption microscopy and the atom probe. Nature 253, 342343.CrossRefGoogle Scholar
Waugh, A.R., Boyes, E.D. & Southon, M.J. (1976). Investigation of field evaporation with a field-desorption microscope. Surf Sci 61, 109142.CrossRefGoogle Scholar