Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T22:28:51.888Z Has data issue: false hasContentIssue false

Characterization of SiGe Films for Use as a National Institute of Standards and Technology Microanalysis Reference Material (RM 8905)

Published online by Cambridge University Press:  24 December 2009

Ryna B. Marinenko*
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Shirley Turner
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
David S. Simons
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Savelas A. Rabb
Affiliation:
Analytical Chemistry Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Rolf L. Zeisler
Affiliation:
Analytical Chemistry Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Lee L. Yu
Affiliation:
Analytical Chemistry Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Dale E. Newbury
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Rick L. Paul
Affiliation:
Analytical Chemistry Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Nicholas W.M. Ritchie
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Stefan D. Leigh
Affiliation:
Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Michael R. Winchester
Affiliation:
Analytical Chemistry Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Lee J. Richter
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Douglas C. Meier
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Keana C.K. Scott
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
Donna Klinedinst
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
John A. Small
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Bulk silicon-germanium (SiGe) alloys and two SiGe thick films (4 and 5 μm) on Si wafers were tested with the electron probe microanalyzer (EPMA) using wavelength dispersive spectrometers (WDS) for heterogeneity and composition for use as reference materials needed by the microelectronics industry. One alloy with a nominal composition of Si0.86Ge0.14 and the two thick films with nominal compositions of Si0.90Ge0.10 and Si0.75Ge0.25 on Si, evaluated for micro- and macroheterogeneity, will make good microanalysis reference materials with an overall expanded heterogeneity uncertainty of 1.1% relative or less for Ge. The bulk Ge composition in the Si0.86Ge0.14 alloy was determined to be 30.228% mass fraction Ge with an expanded uncertainty of the mean of 0.195% mass fraction. The thick films were quantified with WDS-EPMA using both the Si0.86Ge0.14 alloy and element wafers as reference materials. The Ge concentration was determined to be 22.80% mass fraction with an expanded uncertainty of the mean of 0.12% mass fraction for the Si0.90Ge0.10 wafer and 43.66% mass fraction for the Si0.75Ge0.25 wafer with an expanded uncertainty of the mean of 0.25% mass fraction. The two thick SiGe films will be issued as National Institute of Standards and Technology Reference Materials (RM 8905).

Type
Thick and Thin Films: Standards and Analysis
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, J.T. (1991). Quantitative elemental analysis of individual microparticles with electron beam instruments. In Electron Probe Quantitation, Heinrich, K.F.J. and Newbury, D.E. (Eds.), pp. 261313. New York: Plenum Press.CrossRefGoogle Scholar
Armstrong, J.T. (1995). CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal 4, 177200.Google Scholar
Bence, A.E. & Albee, A.L. (1968). Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76, 382403.CrossRefGoogle Scholar
Berger, M.J., Hubbell, J.H., Seltzer, S.M., Chang, J., Coursey, J.S., Sukumar, R. & Zucker, D.S. (2005). XCOM: Photon cross section database (version 1.3). Available at http://physics.nist.gov/xcom. Gaithersburg, MD: National Institute of Standards and Technology.Google Scholar
Carpenter, P. & Cobb, S.D. (2001). Application of alpha-factor and Monte-Carlo methods to epma in the system Ge-Si. Microsc Microanal 7(S2), 682683.CrossRefGoogle Scholar
Chantler, C.T., Olsen, K., Dragoset, R.A., Chang, J., Kishore, A.R., Kotochigova, S.A. & Zucker, D.S. (2005). X-ray form factor, attenuation and scattering tables (version 2.1). Gaithersburg, MD: National Institute of Standards and Technology. Available at http://physics.nist.gov/ffast.Google Scholar
Donovan, J. (2005). Probe Software, Inc. Web site at http://www.probesoftware.com.Google Scholar
Fiori, C.E. & Swyt-Thomas, C.R. (1991). U.S. Patent number 5,299,138, accepted 1994. Desk top spectrum analyzer. Free version available at http://www.cstl.nist.gov/div837/Division/outputs/software.htm.Google Scholar
Heinrich, K.F.J. (1966). Mass absorption coefficients for electron probe microanalysis. In The Electron Microprobe, McKinley, T.D, Heinrich, K.F.J. & Wittry, D.B. (Eds.), pp. 296366. New York: Wiley & Sons.Google Scholar
Heinrich, K.F.J. (1986). Mass absorption coefficients for electron probe microanalysis. In Proceedings of the 11th International Congress on X-ray Optics and Microanalysis, London, Canada, August 1986, Brown, J.D. & Packwood, R.H. (Eds.), pp. 67119. London, Ontario, Canada: University of Western Ontario.Google Scholar
Henke, B.L. & Ebisu, E.S. (1974). Low energy X-ray and electron absorption within solids (100–1500 eV region). In Advances in X-Ray Analysis, Vol. 17, Grant, C.L., Barrett, C.S., Newkirk, J.B. & Ruud, C.O. (Eds.), pp. 150213. New York: Plenum Press.CrossRefGoogle Scholar
Henke, B.L., Lee, P., Tanaka, T.J., Shimabukuro, R.I. & Fujikawa, B.K. (1982). Low energy X-ray interaction coefficients: Photoabsorption, scattering and reflection. Atomic Data and Nuclear Data Tables 27, 1144.CrossRefGoogle Scholar
Hovington, P., Drouin, D. & Gauvin, R. (1997). CASINO: A new Monte Carlo code in C language for electron beam interaction. Part I: Description of the program. Scanning 19, 114.CrossRefGoogle Scholar
Humlicek, J., Garriga, M., Alonso, M.I. & Cardona, M. (1989). Optical spectra of SiXGe1-X alloys. J Appl Phys 65(7), 28272832.CrossRefGoogle Scholar
ISO (1995). Guide to the expression of uncertainty in measurement. Guide 98, Geneva, Switzerland: International Organization for Standardization.Google Scholar
ISO (2003). Microbeam analysis—Electron probe microanalysis—Guidelines for the specification of certified reference materials (CRMs). International Standard 14595.Geneva, Switzerland: International Organization for Standardization.Google Scholar
Levenson, M.S., Banks, D.L., Eberhardt, K.R., Gill, L.M., Guthrie, W.F., Liu, H.K., Vangel, M.G., Yen, J.H. & Zhang, N.F. (2000). An approach to combining results from multiple methods motivated by the ISO GUM. J Res Natl Inst Stand Technol 105, 571579.CrossRefGoogle ScholarPubMed
Lindstrom, R.M., Zeisler, R. & Greenberg, R.R. (2007). Accuracy and uncertainty in radioactivity measurement for NAA. J Radioanal Nucl Chem 271, 311315.CrossRefGoogle Scholar
Marinenko, R. & Leigh, S. (2004). Heterogeneity evaluation of research materials for microanalysis standards certification. Micros Microanal 10, 491506.CrossRefGoogle ScholarPubMed
Marinenko, R.B., Armstrong, J.T., Turner, S., Steel, E.B. & Stevie, F.A. (2003). Characterization of SiGe bulk compositional standards with electron probe microanalysis. In Characterization and Metrology for ULSI Technology: 2003 International Conference on Characterization and Metrology for ULSI Technology, Seiler, D.G., Diebold, A.C., Shaffner, T.J., McDonald, R., Zollner, S., Rajinder, P.K. & Secula, E.M. (Eds.), pp. 238242. New York: American Institute of Physics.Google Scholar
McMaster, W.H., Del Grande, N.K., Mallet, J.H. & Hubbell, J.H. (1969). Compilation of X-ray cross sections. Report UCRL-50174, Lawrence Livermore Laboratory.Google Scholar
Newbury, D.E. & Myklebust, R.L. (1995). NIST micro MC: A user's guide to the NIST microanalysis Monte Carlo electron trajectory simulation program. Microbeam Anal 4, 165175.Google Scholar
Paul, R.L., Lindstrom, R.M. & Heald, A.E. (1997). Cold neutron prompt gamma-ray activation analysis at NIST—Recent development. J Radioanal Nucl Chem 215(1), 6368.CrossRefGoogle Scholar
Pouchou, J.L. & Pichoir, F. (1988). A simplified version of the “PAP” model for matrix corrections in EPMA. In Microbeam Analysis—1988, Proceedings of the 23rd Annual Meeting of the Microbeam Analysis Society, Milwaukee, WI, Newbury, D.E. (Ed.), pp. 315318. San Francisco, CA: San Francisco Press.Google Scholar
Pouchou, J.L. & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Eds.), pp. 3176. New York: Plenum Press.CrossRefGoogle Scholar
Rabb, S.A., Winchester, M.R. & Yu, L.L. (2008). Accurate determinations of Ge atom fractions in SiGe semiconductor chips using high performance ICP-OES. J Anal At Spectrom 23, 550554.CrossRefGoogle Scholar
Ritchie, N.W.M. (2005). A new Monte Carlo application for complex sample geometries. Surf Interface Anal 37, 10061011.CrossRefGoogle Scholar
Salit, M.L. (2005). Traceability of single-element calibration solutions. Anal Chem 77, 136A141A.CrossRefGoogle Scholar
Salit, M.L., Turk, G.C., Lindstrom, A.P., Butler, T.A., Beck, C.M. II & Norman, B. (2001). Single-element solution comparisons with a high-performance inductively coupled plasma optical emission spectrometric method. Anal Chem 73, 48214829.CrossRefGoogle ScholarPubMed
Salit, M.L., Vocke, R.D. & Kelly, W.R. (2000). An ICP-OES method with 0.2% expanded uncertainties for the characterization of LiAlO2. Anal Chem 72, 35043511.CrossRefGoogle Scholar
Scott, V.D. & Love, G. (1983). Quantitative Electron-Probe Microanalysis. New York: Wiley & Sons.Google Scholar
Scott, V.D. & Love, G. (1991). An EPMA correction method based upon a quadrilateral ϕ(ρz) profile. In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Eds.), pp. 1930. New York: Plenum Press.CrossRefGoogle Scholar
Subbanna, S., Meyerson, B., O'Connell, T. & St. Onge, S. (2001). Silicon-germanium economic drivers, technology, and volume production issues. Future Fab Intl 11, sect. 1. Available at http://www.future-fab.com/documents.asp?d_id=620&login=tried.Google Scholar
Taylor, B.N. & Kuyatt, C.E. (1994). Guidelines for Evaluating and Expressing Uncertainty in NIST Measurement Results. NIST Technical Note 1297. Gaithersburg, MD: National Institute of Standards and Technology.CrossRefGoogle Scholar
Zeisler, R. (2000). Maintaining accuracy in gamma-ray spectrometry at high count rates. J Radioanal Nucl Chem 244, 507510.CrossRefGoogle Scholar