Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T02:53:10.337Z Has data issue: false hasContentIssue false

Characterization of Hydroxyapatite by Electron Microscopy

Published online by Cambridge University Press:  15 November 2005

V. Rodríguez-Lugo
Affiliation:
Centro Universitario de Vinculación, Benemérita Universidad Autónoma de Puebla, 29 Oriente 601-1 Col. Ladrillera de Benítez, C.P. Puebla 72520, México Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 sur, Ciudad Universitaria, C.P. 72570 Puebla, México
J. Sanchez Hernández
Affiliation:
Centro Universitario de Vinculación, Benemérita Universidad Autónoma de Puebla, 29 Oriente 601-1 Col. Ladrillera de Benítez, C.P. Puebla 72520, México
Ma. J. Arellano-Jimenez
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, A.P. 1-1010, Querétaro, 76000, México
P.H. Hernández-Tejeda
Affiliation:
Instituto de Física de la Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48 Puebla 72520, México
S. Recillas-Gispert
Affiliation:
Centro Universitario de Vinculación, Benemérita Universidad Autónoma de Puebla, 29 Oriente 601-1 Col. Ladrillera de Benítez, C.P. Puebla 72520, México Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 sur, Ciudad Universitaria, C.P. 72570 Puebla, México
Get access

Abstract

The obtention of hydroxyapatite (HAp) is reported using brushite (CaHPO4·2H2O) and the skeleton of a starfish (Mellita eduardobarrosoi sp. nov.), primarily composed of magnesian calcite ((Ca,Mg)CO3) as precursors. Stoichiometric amounts of both were reacted under hydrothermal conditions: a pressure of 5.8 MPa and a temperature of 200°C for 2, 4, 6, 8, 10, and 20 h of reaction times. The samples obtained were characterized by means of scanning electron microscopy, X-ray diffraction, infrared spectroscopy, and transmission electron microscopy. Two defined populations of HAp fibers were found: A bundle of fibers 75 μm in length and 1–13 μm in diameter, and a second bundle of fibers 5 μm in length and less than 0.5 μm in diameter. Furthermore, an increase in HAp formation and a Ca/P ratio as a function of reaction time were observed. The growth mechanism of HAp is also discussed.

Type
Biological Applications
Copyright
© 2005 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araiza, M. (1994). Caracterización ultraestructural de la mellita eduardobarrosoi sp nov y la valoración in vivo de su capacidad como biomaterial. México: UNAM.
Ascencio-Gutierrez, J., Rodríguez-Lugo, V., Angeles, C., Santamaría, T., & Castaño, V.M. (2002). Theoretical analysis of hidroxiapatite and its main precursors by quantum mechanics and HRTEM image simulations. Comput Mater Sci 25, 413426.Google Scholar
Ito, A., Nakamura, S., Aoki, H., Akao, M., Teraoka, K., Tsutsumi, S., Onuma, K., & Tateishi, T. (1996). Hydrothermal growth of carbonate-containing hydroxyapatita single crystals. J Cryst Growth 163, 311317.Google Scholar
Byrappa, K. & Yoshimura, M. (2001). Handbook of hydrothermal technology. New York: William Andrew Publishing.
Combes, C., Freche, M., & Rey, C. (1995). Nucleation and crystal growth of dicalcium phosphate dihydrate on titanium powder. J Mater Sci-Mater Med 6, 699702.Google Scholar
Gosner, K.L. (1988). Guide to identification of marine and estuarine invertebrates, pp. 570574. New York: Wiley-Interscience.
Hench, L.L. (1991). Bioceramics: From concept to clinic. J Am Ceram Soc 74, 14871570.Google Scholar
Liu, H.S., Chin, T.S., Lai, L.S., Chiu, S.Y., Chung, K.H., Chang, C.S., & Lui, M.T. (1997). Hydroxyapatite by a simplified hydrothermal method. Ceram Int 23, 1925.Google Scholar
Mattox, K. (1992). The global biomaterials where hard tissue biomaterials fit in. In Hard Tissue Repair and Replacement, Vol. 3 Muster, D. (Ed.). Amsterdam: Elsevier.
Recillas, S., Mondragón, G., Rodríguez, V., & Castaño, V.M. (2003). Growth of calcium phosphates onto chemical-functionallized cottons. Des Monom Poly 6, 383398.Google Scholar
Rodríguez-Lugo, V., Camacho-Bragado, G.A., Angeles-Chávez, C., Cruz-Colin, R., & Castaño-Meneses, V.M. (1999). Synthesis of hidroxiapatite by hydrothermal process, V Interamerican Electrón Microscopy Congress [URL: Materials[setmn ]Works[setmn ]95.htm].
Rodríguez-Lugo, V., Ascencio, J.A., Angeles-Chavez, C., Camacho-Bragado, A., & Castaño, V.M. (2001a). Controlled hydrothermal production of hydroxylapatite from marine skeletons. Mater Technol 16, 97103.Google Scholar
Rodríguez-Lugo, V., Camacho-Bragado, A., & Castaño-Meneses, V. (2001b). Morphological and compositional changes on sand dollar induced by heat treatments. Mater Manuf Processes 18(1), 6778.Google Scholar
Rodríguez-Lugo, V., Hernández, V., & Angeles-Chavez, C. (2003). Synthesis of hydroxylapatite from sand dollar and β-tricalcium phosphate by the solid-state method. Mater Manuf Processes 18(6), 903913.Google Scholar
Rodríguez-Lugo, V., Angeles-Chavez, V., Mondragon, G., Recillas-Gispert, S., & Castaño, V.M. (2004). Synthesis and structural characterization of hydroxylapatite obtained from CaO by hydrothermal method. Mater Res Innov 8, 157169.Google Scholar
Rosa, A.L., Beloti, V., & Oliveira, V. (2002). Osseointegration and osseoconductivity of hydroxyapatite of different microporosities. J Mater Sci-Mater Med 13, 10711075.Google Scholar
Santos, R. & Clayton, R. (1995). The carbonate content in high-temperature apatite: Analytical methods applied to apatite from the Jacuripanga alkaline complex. Am Mineral 80, 336344.Google Scholar
Sivakumar, M., Sampath Kumar, T.S., Shantha, K.L., & Panduranga Rao, V. (1996). Development of hydroyapatite derived from Indian coral. Biomaterials 17, 17091714.Google Scholar
Suchanek, W. & Yoshimura, M. (1998). Processing and properties of hydroxiapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 13, 94117.Google Scholar
Yoshimura, M. & Suda, H. (1994). Hydrothermal synthesis of biocompatible whiskers. J Mater Sci 29, 33993402.Google Scholar