Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T23:18:24.973Z Has data issue: false hasContentIssue false

Characterization of Amorphous Oxide Nano-Thick Layers on 316L Stainless Steel by Electron Channeling Contrast Imaging and Electron Backscatter Diffraction

Published online by Cambridge University Press:  29 September 2016

Mahrokh Dorri
Affiliation:
Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering, CHU de Québec Research Center, Laval University, Pavillon Pouliot, 1065 Medicine Street, Québec, QC, Canada, G1V 0A6 CHU Research Center of Quebec, 10 rue de l’Espinay, Room E0-165, Québec, QC, Canada, G1L 3L5
Stéphane Turgeon
Affiliation:
CHU Research Center of Quebec, 10 rue de l’Espinay, Room E0-165, Québec, QC, Canada, G1L 3L5
Nicolas Brodusch
Affiliation:
Mining and Materials Department, McGill University, Wong Building, 3610 University Street, Montréal, QC, Canada, H3A 0C5
Maxime Cloutier
Affiliation:
Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering, CHU de Québec Research Center, Laval University, Pavillon Pouliot, 1065 Medicine Street, Québec, QC, Canada, G1V 0A6 CHU Research Center of Quebec, 10 rue de l’Espinay, Room E0-165, Québec, QC, Canada, G1L 3L5
Pascale Chevallier
Affiliation:
CHU Research Center of Quebec, 10 rue de l’Espinay, Room E0-165, Québec, QC, Canada, G1L 3L5
Raynald Gauvin
Affiliation:
Mining and Materials Department, McGill University, Wong Building, 3610 University Street, Montréal, QC, Canada, H3A 0C5
Diego Mantovani*
Affiliation:
Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Mining, Metallurgical and Materials Engineering, CHU de Québec Research Center, Laval University, Pavillon Pouliot, 1065 Medicine Street, Québec, QC, Canada, G1V 0A6 CHU Research Center of Quebec, 10 rue de l’Espinay, Room E0-165, Québec, QC, Canada, G1L 3L5
*
*Corresponding author.[email protected]
Get access

Abstract

Characterization of the topmost surface of biomaterials is crucial to understanding their properties and interactions with the local environment. In this study, the oxide layer microstructure of plasma-modified 316L stainless steel (SS316L) samples was analyzed by a combination of electron backscatter diffraction and electron channeling contrast imaging using low-energy incident electrons. Both techniques allowed clear identification of a nano-thick amorphous oxide layer, on top of the polycrystalline substrate, for the plasma-modified samples. A methodology was developed using Monte Carlo simulations combined with the experimental results to estimate thickness of the amorphous layer for different surface conditions. X-ray photoelectron spectroscopy depth profiles were used to validate these estimations.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ASTM-F86 (2013). Designation: F86, standard practice for surface preparation and marking of metallic surgical implants, West Conshohocken, PA. Available at http://www.astm.org.Google Scholar
Berger, D. & Niedrig, H. (2002). Energy distribution of electron backscattering from crystals and relation to electron backscattering patterns and electron channeling patterns. Scanning 24(2), 7074.Google Scholar
Blawert, C., Mordike, B.L., Collins, G.A., Short, K.T., Jirásková, Y., Schneeweiss, O. & Perina, V. (2000). Characterisation of duplex layer structures produced by simultaneous implantation of nitrogen and carbon into austenitic stainless steel X5CrNi189. Surf Coat Technol 128–129, 219225.CrossRefGoogle Scholar
Bou-Saleh, Z., Shahryari, A. & Omanovic, S. (2007). Enhancement of corrosion resistance of a biomedical grade 316LVM stainless steel by potentiodynamic cyclic polarization. Thin Solid Films 515(11), 47274737.CrossRefGoogle Scholar
Christiansen, T. & Somers, M.A.J. (2005). Low temperature gaseous nitriding and carburising of stainless steel. Surf Eng 21(5–6), 445455.CrossRefGoogle Scholar
Chu, P.K., Chen, J.Y., Wang, L.P. & Huang, N. (2002). Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36(5–6), 143206.Google Scholar
Cloutier, M., Turgeon, S., Chevallier, P. & Mantovani, D. (2011). On the interface between plasma fluorocarbon films and 316L stainless steel substrates for advanced coated stents. Adv Mat Res 409, 117122.Google Scholar
Coates, D.G. (1967). Kikuchi-like reflection patterns obtained with the scanning electron microscope. Philos Mag 16(144), 11791184.Google Scholar
Cottis, R.A. & Shreir, L.L. (2010). Corrosion of amorphous and nanograined alloys. In Shreir’s corrosion, Corrosion and degradation of engineering materials, 4th ed.; Cottis, B., Graham, M., Lindsay, R., Lyon, S., Richardson, T., Scantlebury, D. & Stott, H. (Eds.), pp. 2192–2202. Manchester: Elsevier.Google Scholar
Deal, A., Hooghan, T. & Eades, A. (2008). Energy-filtered electron backscatter diffraction. Ultramicroscopy 108(2), 116125.Google Scholar
Gauvin, R. (2005). Improved electron microscopy with Monte Carlo simulations. Microsc Microanal 11(Suppl 2), 620621.Google Scholar
Gauvin, R. & Michaud, P. (2009). MC X-ray, a new Monte Carlo program for quantitative X-ray microanalysis of real materials. Microsc Microanal 15(Suppl 2), 488489.CrossRefGoogle Scholar
Gontijo, L.C., Machado, R., Kuri, S.E., Casteletti, L.C. & Nascente, P.A.P. (2006). Corrosion resistance of the layers formed on the surface of plasma-nitrided AISI 304L steel. Thin Solid Films 515(3), 10931096.CrossRefGoogle Scholar
Haïdopoulos, M., Turgeon, S., Laroche, G. & Mantovani, D. (2005). Surface modifications of 316 stainless steel for the improvement of its interface properties with RFGD-deposited fluorocarbon coating. Surf Coat Technol 197(2–3), 278287.Google Scholar
Haïdopoulos, M., Turgeon, S., Sarra-Bournet, C., Laroche, G. & Mantovani, D. (2006). Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications. J Mater Sci Mater Med 17(7), 647657.Google Scholar
Hermawan, H., Ramdan, D. & Djuansjah, J.R.P. (2011). Metals for biomedical applications. In Biomedical Engineering – From Theory to Applications, Fazel-Rezai, R. (Ed.), pp. 411430. InTech: published online.Google Scholar
Holt, D.B., Muir, M., Grant, P. & Boswarva, I. (1974). Quantitative Scanning Electron Microscopy. London, New York and San Francisco, CA: Academic Press.Google Scholar
Humphreys, F.J., Huang, Y., Brough, I. & Harris, C. (1999). Electron backscatter diffraction of grain and subgrain structures — resolution considerations. J Microsc 195(3), 212216.Google Scholar
Joy, D.C. (2002). SMART – a program to measure SEM resolution and imaging performance. J Microsc 208(1), 2434.CrossRefGoogle Scholar
Lee, S.-J. & Lai, J.-J. (2003). The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel. J Mater Process Technol 140(1–3), 206210.Google Scholar
Lewis, F., Cloutier, M., Chevallier, P., Turgeon, S., Pireaux, J.-J., Tatoulian, M. & Mantovani, D. (2011). Influence of the 316L stainless steel interface on the stability and barrier properties of plasma fluorocarbon films. ACS Appl Mater Interfaces 3(7), 23232331.Google Scholar
Lewis, F., Turgeon, S., Chevallier, P., Pireaux, J.-J., Tatoulian, M. & Mantovani, D. (2010). On the growth of fluorocarbon thin films deposited on plasma-etched 316L stainless steel. Plasma Process Polym 7(3–4), 309317.Google Scholar
Liu, G., Lu, J. & Lu, K. (2000). Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening. Mat Sci Eng A Struct Mater 286(1), 9195.CrossRefGoogle Scholar
Lo, K.H., Shek, C.H. & Lai, J.K.L. (2009). Recent developments in stainless steels. Mater Sci Eng R Rep R65(4–6), 39104.CrossRefGoogle Scholar
Mao, X.Y., Li, D.Y., Fang, F., Tan, R.S. & Jiang, J.Q. (2010). A simple technique of nanocrystallizing metallic surfaces for enhanced resistances to mechanical and electrochemical attacks. Mat Sci Eng A Struct Mater 527(12), 28752880.CrossRefGoogle Scholar
Mordyuk, B.N., Prokopenk, G.I., Vasylyev, M.A. & Iefimov, M.O. (2007). Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel. Mat Sci Eng A Struct Mater 458(1–2), 253261.Google Scholar
Nazneen, F., Herzog, G., Arrigan, D.W.M., Caplice, N., Benvenuto, P., Galvin, P. & Thompson, M. (2012). Surface chemical and physical modification in stent technology for the treatment of coronary artery disease. J Biomed Mater Res B Appl Biomater 100(7), 19892014.Google Scholar
Okado, J., Okada, K., Ishiyama, A., Setsuhara, Y. & Takenaka, K. (2008). Corrosion resistance of plasma-oxidized stainless steel. Surf Coat Technol 202(22–23), 55955598.Google Scholar
Qiu, J.H. (2002). Passivity and its breakdown on stainless steels and alloys. Surf Interface Anal 33(10–11), 830833.Google Scholar
Rasband, W.S. (1997–2015). ImageJ. Bethesda, MD: National Institutes of Health.Google Scholar
Ratner, B.D., Hoffman, A.S., Schoen, F.J. & Lemons, J.E. (2004). Biomaterials Science – An Introduction to Materials in Medicine, 2nd ed, San Diego, California: Academic Press.Google Scholar
Reimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Verlag Berlin Heidelberg: Springer.Google Scholar
Roland, T., Retraint, D., Lu, K. & Lu, J. (2006). Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater 54(11), 19491954.Google Scholar
Samandi, M., Shedden, B.A., Smith, D.I., Collins, G.A., Hutchings, R. & Tendys, J. (1993). Microstructure, corrosion and tribological behavior of plasma immersion ion-implanted austenitic stainless-steel. Surf Coat Technol 59(1–3), 261266.Google Scholar
Schwartz, A.J., Kumar, M., Adams, B.L. & Field, D.P. (2009). Electron Backscatter Diffraction in Materials Science. USA: Springer US.CrossRefGoogle Scholar
Shahryari, A., Omanovic, S. & Szpunar, J.A. (2008). Electrochemical formation of highly pitting resistant passive films on a biomedical grade 316LVM stainless steel surface. Mat Sci Eng C Mater Biol Appl 28(1), 94106.Google Scholar
Shih, C.C., Lin, S.J., Chung, K.H., Chen, Y.L. & Su, Y.Y. (2000). Increased corrosion resistance of stent materials by converting current surface film of polycrystalline oxide into amorphous oxide. J Biomed Mater Res 52(2), 323332.Google Scholar
Shih, C.-C., Shih, C.-M., Su, Y.-Y., Su, L.H.J., Chang, M.-S. & Lin, S.-J. (2004). Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corros Sci 46(2), 427441.Google Scholar
Steinmetz, D.R. & Zaefferer, S. (2010). Towards ultrahigh resolution EBSD by low accelerating voltage. Mater Sci Technol 26(6), 640645.Google Scholar
Su, Y.Y. (1998). The quest for wire surface quality for medical applications. Wire J Int 31(2), 106113.Google Scholar
Venables, J.A. & Harland, C.J. (1973). Electron back-scattering patterns – a new technique for obtaining crystallographic information in the scanning electron microscope. Philos Mag 27(5), 11931200.Google Scholar
Wei, R., Vajo, J.J., Matossian, J.N., Wilbur, P.J., Davis, J.A., Williamson, D.L. & Collins, G.A. (1996). A comparative study of beam ion implantation, plasma ion implantation and nitriding of AISI 304 stainless steel. Surf Coat Technol 83(1–3), 235242.Google Scholar
Wheeler, D.R. & Brainard, W.A., United States National Aeronautics and Space Administration. Scientific and Technical Information Office (1978). X-Ray Photoelectron Spectroscopy Study of Radiofrequency-Sputtered Refractory-Compound-Steel Interfaces. National Aeronautics and Space Administration, Scientific and Technical Information Office.Google Scholar
Wilkinson, A.J. & Hirsch, P.B. (1997). Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 28(4), 279308.Google Scholar
Yang, D.B. (1998). Effect of surface passivation treatments of stainless steels on anaerobic cure activity. In First International Congress on Adhesion Science and Technology – Invited Papers: Festschrift in Honor of Dr. K.L. Mittal on the Occasion of his 50th Birthday, Mittal, K.L., Van Ooij W.J. & Anderson H.R. (Eds.), pp. 557572. The University of Michigan: VSP.Google Scholar
Yu, B., Davis, E.M., Hodges, R.S., Irvin, R.T. & Li, D.Y. (2008). Surface nanocrystallization of stainless steel for reduced biofilm adherence. Nanotechnology 19(33), 335101.Google Scholar
Zaefferer, S. (2007). On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns. Ultramicroscopy 107(2–3), 254266.Google Scholar
Zaefferer, S. & Elhami, N.-N. (2014). Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater 75, 2050.Google Scholar