Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-15T05:21:17.754Z Has data issue: false hasContentIssue false

Cell and Tissue Imaging by TOF-SIMS and MALDI-TOF: An Overview for Biological and Pharmaceutical Analysis

Published online by Cambridge University Press:  23 November 2021

Manale Noun*
Affiliation:
Lebanese Atomic Energy Commission – NCSR, Beirut, Lebanon
Rayane Akoumeh
Affiliation:
Lebanese Atomic Energy Commission – NCSR, Beirut, Lebanon
Imane Abbas
Affiliation:
Lebanese Atomic Energy Commission – NCSR, Beirut, Lebanon
*
*Corresponding author: Manale Noun, E-mail: [email protected]
Get access

Abstract

The potential of mass spectrometry imaging (MSI) has been demonstrated in cell and tissue research since 1970. MSI can reveal the spatial distribution of a wide range of atomic and molecular ions detected from biological sample surfaces, it is a powerful and valuable technique used to monitor and detect diverse chemical and biological compounds, such as drugs, lipids, proteins, and DNA. MSI techniques, notably matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and time of flight secondary ion mass spectrometry (TOF-SIMS), witnessed a dramatic upsurge in studying and investigating biological samples especially, cells and tissue sections. This advancement is attributed to the submicron lateral resolution, the high sensitivity, the good precision, and the accurate chemical specificity, which make these techniques suitable for decoding and understanding complex mechanisms of certain diseases, as well as monitoring the spatial distribution of specific elements, and compounds. While the application of both techniques for the analysis of cells and tissues is thoroughly discussed, a briefing of MALDI-TOF and TOF-SIMS basis and the adequate sampling before analysis are briefly covered. The importance of MALDI-TOF and TOF-SIMS as diagnostic tools and robust analytical techniques in the medicinal, pharmaceutical, and toxicology fields is highlighted through representative published studies.

Type
Review Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Both authors equally contributed and should be considered as co-first authors.

References

Abdelmoula, WM, Carreira, RJ, Shyti, R, Balluff, B, Van Zeijl, RJM, Tolner, EA, Lelieveldt, BFP, Van Den Maagdenberg, AMJM, McDonnell, LA & Dijkstra, J (2014). Automatic registration of mass spectrometry imaging data sets to the allen brain atlas. Anal Chem 86, 39473954.CrossRefGoogle Scholar
Agüi-Gonzalez, P, Jähne, S & Phan, NTN (2019). SIMS imaging in neurobiology and cell biology. J Anal At Spectrom 34, 13551368. doi:10.1039/C9JA00118BCrossRefGoogle Scholar
Amaya, KR, Monroe, EB, Sweedler, JV & Clayton, DF (2007). Lipid imaging in the zebra finch brain with secondary ion mass spectrometry. Int J Mass Spectrom 260, 121127.CrossRefGoogle Scholar
Andersen, HH, Brunelle, A, Della-Negra, S, Depauw, J, Jacquet, D, Le Beyec, Y, Chaumont, J & Bernas, H (1998). Giant metal sputtering yields induced by 20–5000keV/atom gold clusters. Phys Rev Lett 80, 54335436. doi:10.1103/PhysRevLett.80.5433.CrossRefGoogle Scholar
Andersson, M, Karlsson, O, Bergström, U, Brittebo, EB & Brandt, I (2013). Maternal transfer of the cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) via milk to suckling offspring. PLoS One 8, 110.CrossRefGoogle ScholarPubMed
Aoyagi, S, Hiromoto, S, Hanawa, T & Kudo, M (2004). TOF-SIMS investigation of metallic material surface after culturing cells. Appl Surf Sci 231–232, 470474.CrossRefGoogle Scholar
Araki, T, Mitsuyama, K, Yamasaki, H, Morita, M, Tsuruta, K, Mori, A, Yoshimura, T, Fukunaga, S, Kuwaki, K, Yoshioka, S, Takedatsu, H, Kakuma, T, Akiba, J & Torimura, T (2021). Therapeutic potential of a self-assembling peptide hydrogel to treat colonic injuries associated with inflammatory bowel disease. Journal of Crohn's and Colitis. doi:10.1093/ecco-jcc/jjab033.CrossRefGoogle ScholarPubMed
Asara, JM & Allison, J (1999). Enhanced detection of phosphopeptides in matrix-assisted laser desorption/ionization mass spectrometry using ammonium salts. J Am Soc Mass Spectrom 10, 3544. doi:10.1016/S1044-0305(98)00129-9CrossRefGoogle ScholarPubMed
Atkinson, SJ, Loadman, PM, Sutton, C, Patterson, LH & Clench, MR (2007). Examination of the distribution of the bioreductive drug AQ4N and its active metabolite AQ4 in solid tumours by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 21, 12711276. doi:10.1002/rcm.2952CrossRefGoogle ScholarPubMed
Attia, AS, Schroeder, KA, Seeley, EH, Wilson, KJ, Hammer, ND, Colvin, DC, Manier, ML, Nicklay, JJ, Rose, KL, Gore, JC, Caprioli, RM & Skaar, EP (2012). Monitoring the inflammatory response to infection through the integration of MALDI IMS and MRI. Cell Host Microbe 11, 664673.CrossRefGoogle ScholarPubMed
Baker, MJ, Zheng, L, Winograd, N, Lockyer, NP & Vickerman, JC (2008). Mass spectral imaging of glycophospholipids, cholesterol, and glycophorin A in model cell membranes. Langmuir 24, 1180311810. doi:10.1021/la802582fCrossRefGoogle ScholarPubMed
Bauer, JA, Chakravarthy, AB, Rosenbluth, JM, Mi, D, Seeley, EH, De Matos Granja-Ingram, N, Olivares, MG, Kelley, MC, Mayer, IA, Meszoely, IM, Means-Powell, JA, Johnson, KN, Tsai, CJ, Ayers, GD, Sanders, ME, Schneider, RJ, Formenti, SC, Caprioli, RM & Pietenpol, JA (2010). Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation. Clin Cancer Res 16, 681690.CrossRefGoogle ScholarPubMed
Bich, C, Havelund, R, Moellers, R, Touboul, D, Kollmer, F, Niehuis, E, Gilmore, IS & Brunelle, A (2013). Argon cluster Ion source evaluation on lipid standards and rat brain tissue samples. Anal Chem 85, 77457752. doi:10.1021/ac4009513CrossRefGoogle ScholarPubMed
Bodzon-Kulakowska, A & Suder, P (2016). Imaging mass spectrometry: Instrumentation, applications, and combination with other visualization techniques. Mass Spectrom Rev 35, 147169. doi:10.1002/mas.21468CrossRefGoogle ScholarPubMed
Bonesso, L, Piraud, M, Caruba, C, Van Obberghen, E, Mengual, R & Hinault, C (2014). Fast urinary screening of oligosaccharidoses by MALDI-TOF/TOF mass spectrometry. Orph J Rare Dis 9, 19.CrossRefGoogle ScholarPubMed
Börner, K, Nygren, H, Hagenhoff, B, Malmberg, P, Tallarek, E & Månsson, J-E (2006). Distribution of cholesterol and galactosylceramide in rat cerebellar white matter. Biochim Biophys Acta 1761, 335344.CrossRefGoogle ScholarPubMed
Bowman, AP, Heeren, RMA & Ellis, SR (2019). Advances in mass spectrometry imaging enabling observation of localised lipid biochemistry within tissues. TrAC, Trends Anal Chem 120, 115197.CrossRefGoogle Scholar
Bruinen, AL, van Oevelen, C, Eijkel, GB, Van Heerden, M, Cuyckens, F & Heeren, RMA (2016). Mass spectrometry imaging of drug related crystal-like structures in formalin-fixed frozen and paraffin-embedded rabbit kidney tissue sections. J Am Soc Mass Spectrom 27, 117123.CrossRefGoogle ScholarPubMed
Brulet, M, Seyer, A, Edelman, A, Brunelle, A, Fritsch, J, Ollero, M & Laprévote, O (2010). Lipid mapping of colonic mucosa by cluster TOF-SIMS imaging and multivariate analysis in cftr knockout mice. J Lipid Res 51, 30343045.CrossRefGoogle ScholarPubMed
Brunelle, A & Laprévote, O (2009). Lipid imaging with cluster time-of-flight secondary ion mass spectrometry. Anal Bioanal Chem 393, 3135. doi:10.1007/s00216-008-2367-3CrossRefGoogle ScholarPubMed
Buchberger, AR, DeLaney, K, Johnson, J & Li, L (2018). Mass spectrometry imaging: A review of emerging advancements and future insights. Anal Chem 90, 240265. doi:10.1021/acs.analchem.7b04733CrossRefGoogle ScholarPubMed
Buck, A & Walch, A (2014). In situ drug and metabolite analysis in biological and clinical research by MALDI MS imaging. Bioanalysis 6, 12411253. doi:10.4155/bio.14.88CrossRefGoogle ScholarPubMed
Bunch, J, Clench, MR & Richards, DS (2004). Determination of pharmaceutical compounds in skin by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 18, 30513060. doi:10.1002/rcm.1725CrossRefGoogle ScholarPubMed
Caprioli, RM, Farmer, TB & Gile, J (1997). Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69, 47514760. doi:10.1021/ac970888iCrossRefGoogle ScholarPubMed
Chandra, S & Lorey, DR (2007). SIMS ion microscopy imaging of boronophenylalanine (BPA) and 13C15N-labeled phenylalanine in human glioblastoma cells: Relevance of subcellular scale observations to BPA-mediated boron neutron capture therapy of cancer. Int J Mass Spectrom 260, 90101.CrossRefGoogle Scholar
Chang, HM, Chen, BJ, Wu, UI, Huang, YL & Der Mai, F (2008). Molecular imaging of enhanced Na+expression in the liver of total sleep deprived rats by TOF-SIMS. Appl Surf Sci 255, 11311134.CrossRefGoogle Scholar
Chang, HM, Liao, WC, Sheu, JN, Chang, CC, Lan, CT & Der Mai, F (2012). Sleep deprivation impairs Ca2+ expression in the hippocampus: Ionic imaging analysis for cognitive deficiency with TOF-SIMS. Microsc Microanal 18, 425435.CrossRefGoogle ScholarPubMed
Chaurand, P, Schwartz, SA, Billheimer, D, Xu, BJ, Crecelius, A & Caprioli, RM (2004). Integrating histology and imaging mass spectrometry. Anal Chem 76, 11451155. doi:10.1021/ac0351264CrossRefGoogle ScholarPubMed
Chéhadé, F, De Labriolle-Vaylet, C, Moins, N, Moreau, MF, Papon, J, Labarre, P, Galle, P, Veyre, A & Hindié, E (2005). Secondary ion mass spectrometry as a tool for investigating radiopharmaceutical distribution at the cellular level: The example of I-BZA and 14C-I-BZA. J Nucl Med 46, 17011706.Google Scholar
Chen, CT & Chen, YC (2004). Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun Mass Spectrom 18, 19561964.CrossRefGoogle ScholarPubMed
Chen, R, Hui, L, Sturm, RM & Li, L (2009). Three dimensional mapping of neuropeptides and lipids in crustacean brain by mass spectral imaging. J Am Soc Mass Spectrom 20, 10681077. doi:10.1016/j.jasms.2009.01.017CrossRefGoogle ScholarPubMed
Chen, X, Liu, Y, Huang, J, Liu, W, Huang, J, Zhang, Y & Fu, W (2017). Label-free techniques for laboratory medicine applications. Front Lab Med 1, 8285.CrossRefGoogle Scholar
Chen, YC, Shiea, J & Sunner, J (1998). Thin-layer chromatography-mass spectrometry using activated carbon, surface-assisted laser desorption/ionization. J Chromatogr, A 826, 7786.CrossRefGoogle ScholarPubMed
Chughtai, K & Heeren, RMA (2010). Mass spectrometric imaging for biomedical tissue analysis. Chem Rev 110, 32373277.CrossRefGoogle ScholarPubMed
Cillero-Pastor, B, Eijkel, G, Kiss, A, Blanco, FJ & Heeren, RMA (2012). Time-of-flight secondary Ion mass spectrometry-based molecular distribution distinguishing healthy and osteoarthritic human cartilage. Anal Chem 84, 89098916. doi:10.1021/ac301853qCrossRefGoogle ScholarPubMed
Cintron-Diaz, YL, Acanda de la Rocha, AM, Castellanos, A, Chambers, JM & Fernandez-Lima, F (2020). Mapping chemotherapeutic drug distribution in cancer cell spheroids using 2D-TOF-SIMS and LESA-TIMS-MS. Analyst 145, 70567062. doi:10.1039/C9AN02245GCrossRefGoogle ScholarPubMed
Cliff, B, Lockyer, N, Jungnickel, H, Stephens, G & Vickerman, JC (2003). Probing cell chemistry with time-of-flight secondary ion mass spectrometry: Development and exploitation of instrumentation for studies of frozen-hydrated biological material. Rapid Commun Mass Spectrom 17, 21632167.CrossRefGoogle ScholarPubMed
Cobo, F (2013). Application of MALDI-TOF mass spectrometry in clinical virology: A review. The Open Virology Journal 7, 8490.CrossRefGoogle ScholarPubMed
Colliver, TL, Brummel, CL, Pacholski, ML, Swanek, FD, Ewing, AG & Winograd, N (1997). Atomic and molecular imaging at the single-cell level with TOF-SIMS. Anal Chem 69, 22252231.CrossRefGoogle ScholarPubMed
Cornett, DS, Frappier, SL & Caprioli, RM (2008). MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal Chem 80, 56485653.CrossRefGoogle ScholarPubMed
Debois, D, Bralet, MP, Le Naour, F, Brunelle, A & Laprévote, O (2009). In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF-SIMS imaging. Anal Chem 81, 28232831.CrossRefGoogle ScholarPubMed
Debois, D, Hamze, K, Guérineau, V, Le Caër, JP, Holland, IB, Lopes, P, Ouazzani, J, Séror, SJ, Brunelle, A & Laprévote, O (2008). In situ localisation and quantification of surfactins in a Bacillus subtilis swarming community by imaging mass spectrometry. Proteomics 8, 36823691.CrossRefGoogle Scholar
Dekker, LJM, van Kampen, JJA, Reedijk, ML, Burgers, PC, Gruters, RA, Osterhaus, ADME & Luider, TM (2009). A mass spectrometry based imaging method developed for the intracellular detection of HIV protease inhibitors. Rapid Commun Mass Spectrom 23, 11831188. doi:10.1002/rcm.3981CrossRefGoogle ScholarPubMed
Desbenoit, N, Schmitz-afonso, I, Baudouin, C, Laprévote, O, Touboul, D, Brignole-baudouin, F & Brunelle, A (2013). Localisation and quantification of benzalkonium chloride in eye tissue by TOF-SIMS imaging and liquid chromatography mass spectrometry. Anal Bioanal Chem 405, 40394049.CrossRefGoogle ScholarPubMed
Drexler, DM, Garrett, TJ, Cantone, JL, Diters, RW, Mitroka, JG, Prieto Conaway, MC, Adams, SP, Yost, RA & Sanders, M (2007). Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues. J Pharmacol Toxicol Methods 55, 279288.CrossRefGoogle Scholar
Du, H, Yi, J, Wu, R, Belinson, SE, Qu, X, Yang, B, Wang, C, Yi, X & Belinson, JL (2011). A New PCR-based mass spectrometry system for high-risk HPV, part II: Clinical trial. Am J Clin Pathol 136, 920923. doi:10.1309/AJCPJDAORUY4EYR6CrossRefGoogle ScholarPubMed
Dufresne, M, Guneysu, D, Patterson, NH, Marcinkiewicz, MM, Regina, A, Demeule, M & Chaurand, P (2017). Multimodal detection of GM2 and GM3 lipid species in the brain of mucopolysaccharidosis type II mouse by serial imaging mass spectrometry and immunohistochemistry. Anal Bioanal Chem 409, 14251433. doi:10.1007/s00216-016-0076-xCrossRefGoogle ScholarPubMed
Duncan, MW, Nedelkov, D, Walsh, R & Hattan, SJ (2016). Applications of MALDI mass spectrometry in clinical chemistry. Clin Chem 62, 134143. doi:10.1373/clinchem.2015.239491CrossRefGoogle ScholarPubMed
Eberlin, LS, Norton, I, Orringer, D, Dunn, IF, Liu, X, Ide, JL, Jarmusch, AK, Ligon, KL, Jolesz, FA, Golby, AJ, Santagata, S, Agar, NYR & Cooks, RG (2013). Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc Natl Acad Sci U S A 110, 16111616.CrossRefGoogle ScholarPubMed
Erne, R, Bernard, L, Steuer, AE, Baumgartner, MR & Kraemer, T (2019). Hair analysis: Contamination versus incorporation from the circulatory system – investigations on single hair samples using time-of-flight secondary ion mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 91, 41324139. doi:10.1021/acs.analchem.8b05866CrossRefGoogle ScholarPubMed
Erne, R, Bernhard, L, Kawecki, M, Baumgartner, MR & Kraemer, T (2020). Using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) for investigations on single hair samples to solve the contamination versus incorporation issue of hair analysis in the case of cocaine and methadone. Analyst 145, 49064919. doi:10.1039/C9AN02577DCrossRefGoogle ScholarPubMed
Fartmann, M, Dambach, S, Kriegeskotte, C, Lipinsky, D, Wiesmann, HP, Wittig, A, Sauerwein, W & Arlinghaus, HF (2003). Subcellular imaging of freeze-fractured cell cultures by TOF-SIMS and laser-SNMS. Appl Surf Sci 203–204, 726729.CrossRefGoogle Scholar
Fartmann, M, Dambach, S, Kriegeskotte, C, Wiesmann, HP, Wittig, A, Sauerwein, W, Lipinsky, D & Arlinghaus, HF (2002). Characterization of cell cultures with ToF-SIMS and laser-SNMS. Surf Interface Anal 34, 6366. doi:10.1002/sia.1253CrossRefGoogle Scholar
Fearn, S (2015). Characterisation of biological material with ToF-SIMS: A review. Mater Sci Technol 31, 148161. doi:10.1179/1743284714Y.0000000668CrossRefGoogle Scholar
Field, JA, Luna-Velasco, A, Boitano, SA, Shadman, F, Ratner, BD, Barnes, C & Sierra-Alvarez, R (2011). Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles. Chemosphere 84, 14011407.CrossRefGoogle ScholarPubMed
Fisher, GL, Belu, AM, Mahoney, CM, Wormuth, K & Sanada, N (2009). Three-dimensional time-of-flight secondary Ion mass spectrometry imaging of a pharmaceutical in a coronary stent coating as a function of elution time. Anal Chem 81, 99309940. doi:10.1021/ac901587kCrossRefGoogle Scholar
Fletcher, JS (2009). Cellular imaging with secondary ion mass spectrometry. Analyst 134, 22042215. doi:10.1039/B913575HCrossRefGoogle ScholarPubMed
Fletcher, JS, Lockyer, NP & Vickerman, JC (2011). Developments in molecular SIMS depth profiling and 3D imaging of biological systems using polyatomic primary ions. Mass Spectrom Rev 30, 142174. doi:10.1002/mas.20275CrossRefGoogle ScholarPubMed
Fletcher, JS, Sämfors, S, Vallin, J, Svanström, A & Grantham, J (2021). Correlated fluorescence microscopy and multi-ion beam secondary ion mass spectrometry imaging reveals phosphatidylethanolamine increases in the membrane of cancer cells over-expressing the molecular chaperone subunit CCTδ. Anal Bioanal Chem 413, 445453. doi:10.1007/s00216-020-03013-9CrossRefGoogle ScholarPubMed
Fletcher, JS & Vickerman, JC (2010). A new SIMS paradigm for 2D and 3D molecular imaging of bio-systems. Anal Bioanal Chem 396, 85104. doi:10.1007/s00216-009-2986-3CrossRefGoogle ScholarPubMed
Francis, JT, Nie, H-Y, Taylor, AR, Walzak, MJ, Chang, WH, MacFabe, DF & Lau, WM (2008). ToF-SIMS cluster ion imaging of hippocampal CA1 pyramidal rat neurons. Appl Surf Sci 255, 11261130.CrossRefGoogle Scholar
Fuchs, B, Süß, R & Schiller, J (2010). An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 49, 450475.CrossRefGoogle ScholarPubMed
Ganova-Raeva, L, Ramachandran, S, Honisch, C, Forbi, JC, Zhai, X & Khudyakov, Y (2010). Robust hepatitis B virus genotyping by mass spectrometry. J Clin Microbiol 48, 4161 LP4164168.CrossRefGoogle ScholarPubMed
Gao, X, Tan, B-H, Sugrue, RJ & Tang, K (2013). MALDI Mass Spectrometry for Nucleic Acid Analysis BT – Applications of MALDI-TOF Spectroscopy, Cai, Z & Liu, S (Eds.), pp. 5577. Berlin, Heidelberg: Springer. doi:10.1007/128_2012_366.Google Scholar
Gazi, E, Dwyer, J, Lockyer, N, Gardner, P, Vickerman, JC, Miyan, J, Hart, CA, Brown, M, Shanks, JH & Clarke, N (2004). The combined application of FTIR microspectroscopy and ToF-SIMS imaging in the study of prostate cancer. Faraday Discuss 126, 4159. doi:10.1039/B304883GCrossRefGoogle Scholar
Gemperline, E, Jayaraman, D, Maeda, J, Ané, J-M & Li, L (2015). Multifaceted investigation of metabolites during nitrogen fixation in Medicago via high resolution MALDI-MS imaging and ESI-MS. J Am Soc Mass Spectrom 26, 149158.CrossRefGoogle ScholarPubMed
Giordano, S, Morosi, L, Veglianese, P, Licandro, SA, Frapolli, R, Zucchetti, M, Cappelletti, G, Falciola, L, Pifferi, V, Visentin, S, D'Incalci, M & Davoli, E (2016). 3D mass spectrometry imaging reveals a very heterogeneous drug distribution in tumors. Sci Rep 6, 37027. doi:10.1038/srep37027.CrossRefGoogle ScholarPubMed
Goodwin, RJA (2012). Sample preparation for mass spectrometry imaging: Small mistakes can lead to big consequences. J Proteomics 75, 48934911.CrossRefGoogle ScholarPubMed
Goodwin, RJ, MacIntyre, L, Watson, DG, Scullion, SP & Pitt, AR (2010). A solvent-free matrix application method for matrix-assisted laser desorption/ionization imaging of small molecules. Rapid Commun Mass Spectrom 24, 16821686. doi:10.1002/rcm.4567CrossRefGoogle ScholarPubMed
Grégoire, S, Luengo, GS, Hallegot, P, Pena, A-M, Chen, X, Bornschlögl, T, Chan, KF, Pence, I, Obeidy, P, Feizpour, A, Jeong, S & Evans, CL (2020). Imaging and quantifying drug delivery in skin – part 1: Autoradiography and mass spectrometry imaging. Adv Drug Delivery Rev 153, 137146.CrossRefGoogle ScholarPubMed
Grignon, N, Halpern, S, Jeusset, J, Briançon, C & Fragu, P (1997). Localization of chemical elements and isotopes in the leaf of soybean (Glycine max) by secondary ion mass spectrometry microscopy: Critical choice of sample preparation procedure. J Microsc 186, 5166. doi:10.1046/j.1365-2818.1997.1850747.xCrossRefGoogle Scholar
Groseclose, MR & Castellino, S (2013). A mimetic tissue model for the quantification of drug distributions by MALDI imaging mass spectrometry. Anal Chem 85, 1009910106. doi:10.1021/ac400892zCrossRefGoogle ScholarPubMed
Groseclose, MR, Laffan, SB, Frazier, KS, Hughes-Earle, A & Castellino, S (2015). Imaging MS in toxicology: An investigation of juvenile Rat nephrotoxicity associated with dabrafenib administration. J Am Soc Mass Spectrom 26, 887898.CrossRefGoogle ScholarPubMed
Gross, JH (2017). Mass Spectrometry a Textbook. 3rd ed. Heidelberg, Germany: Springer. doi:10.1007/978-3-319-54398-7.CrossRefGoogle Scholar
Gross, RW & Han, X (2007). Lipidomics in diabetes and the metabolic syndrome. In Lipidomics and Bioactive Lipids: Specialized Analytical Methods and Lipids in Disease, vol. 433, pp. 7390. Academic Press. Available at https://www.sciencedirect.com/science/article/pii/S0076687907330048.CrossRefGoogle Scholar
Guerquin-Kern, J-L, Coppey, M, Carrez, D, Brunet, A-C, Nguyen, CH, Rivalle, C, Slodzian, G & Croisy, A (1997). Complementary advantages of fluorescence and SIMS microscopies in the study of cellular localization of two new antitumor drugs. Microsc Res Tech 36, 287295. doi:10.1002/(SICI)1097-0029(19970215)36:4%3C287::AID-JEMT6%3E3.0.CO3.0.CO;2-J>CrossRefGoogle Scholar
Gunnarsson, A, Kollmer, F, Sohn, S, Höök, F & Sjövall, P (2010). Spatial-resolution limits in mass spectrometry imaging of supported lipid bilayers and individual lipid vesicles. Anal Chem 82, 24262433. doi:10.1021/ac902744uCrossRefGoogle ScholarPubMed
Guo, S, Wang, Y, Zhou, D & Li, Z (2014). Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Sci Rep 4, 5959.CrossRefGoogle ScholarPubMed
Haase, A, Arlinghaus, HF, Tentschert, J, Jungnickel, H, Graf, P, Mantion, A, Draude, F, Galla, S, Plendl, J, Goetz, ME, Masic, A, Meier, W, Thünemann, AF, Taubert, A & Luch, A (2011). Application of laser postionization secondary neutral mass spectrometry/time-of-flight secondary ion mass spectrometry in nanotoxicology: Visualization of nanosilver in human macrophages and cellular responses. ACS Nano 5, 30593068. doi:10.1021/nn200163wCrossRefGoogle ScholarPubMed
Hachani, J, Duban-Deweer, S, Pottiez, G, Renom, G, Flahaut, C & Périni, J-M (2011). MALDI-TOF MS profiling as the first-tier screen for sickle cell disease in neonates: Matching throughput to objectives. PROTEOMICS – Clin Appl 5, 405414. doi:10.1002/prca.201000093CrossRefGoogle ScholarPubMed
Hall, Z, Bond, NJ, Ashmore, T, Sanders, F, Ament, Z, Wang, X, Murray, AJ, Bellafante, E, Virtue, S, Vidal-Puig, A, Allison, M, Davies, SE, Koulman, A, Vacca, M & Griffin, JL (2017). Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology (Baltimore, MD) 65, 11651180.CrossRefGoogle ScholarPubMed
Hallett, JE, Ferreira, CR, Eberlin, LS & Cooks, RG (2012). 101 lipid fingerprinting of oocytes and pre-implantation mousse embryos by desorption electrospray ionization mass spectrometry. Reprod Fertil Dev 24, 163. doi:10.1071/RDv24n1Ab101.CrossRefGoogle Scholar
Hamm, G, Bonnel, D, Legouffe, R, Pamelard, F, Delbos, J-M, Bouzom, F & Stauber, J (2012). Quantitative mass spectrometry imaging of propranolol and olanzapine using tissue extinction calculation as normalization factor. J Proteomics 75, 49524961.CrossRefGoogle ScholarPubMed
Hankin, JA, Barkley, RM & Murphy, RC (2007). Sublimation as a method of matrix application for mass spectrometric imaging. J Am Soc Mass Spectrom 18, 16461652.CrossRefGoogle ScholarPubMed
Hanrieder, J, Gerber, L, Persson Sandelius, Å, Brittebo, EB, Ewing, AG & Karlsson, O (2014). High resolution metabolite imaging in the hippocampus following neonatal exposure to the environmental toxin BMAA using ToF-SIMS. ACS Chem Neurosci 5, 568575. doi:10.1021/cn500039bCrossRefGoogle Scholar
Hansen, HT & Janfelt, C (2016). Aspects of quantitation in mass spectrometry imaging investigated on cryo-sections of spiked tissue homogenates. Anal Chem 88, 1151311520. doi:10.1021/acs.analchem.6b02711CrossRefGoogle ScholarPubMed
Harvey, DJ (2015). Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011–2012. Mass Spectrom Rev 9999, 1168. doi:10.1002/mas.21471Google Scholar
Heeren, RMA, McDonnell, LA, Amstalden, E, Luxembourg, SL, Altelaar, AFM & Piersma, SR (2006). Why don't biologists use SIMS?: A critical evaluation of imaging MS. Appl Surf Sci 252, 68276835.CrossRefGoogle Scholar
Henss, A, Otto, S-K, Schaepe, K, Pauksch, L, Lips, KS & Rohnke, M (2018). High resolution imaging and 3D analysis of Ag nanoparticles in cells with ToF-SIMS and delayed extraction. Biointerphases 13, 03B410. doi:10.1116/1.5015957.CrossRefGoogle ScholarPubMed
Hrabák, J, Chudáčková, E & Walková, R (2013). Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for detection of antibiotic resistance mechanisms: From research to routine diagnosis. Clin Microbiol Rev 26, 103114.CrossRefGoogle ScholarPubMed
Hsieh, Y, Casale, R, Fukuda, E, Chen, J, Knemeyer, I, Wingate, J, Morrison, R & Korfmacher, W (2006). Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Commun Mass Spectrom 20, 965972. doi:10.1002/rcm.2397CrossRefGoogle ScholarPubMed
Hua, X, Li, H-W & Long, Y-T (2018). Investigation of silver nanoparticle induced lipids changes on a single cell surface by time-of-flight secondary ion mass spectrometry. Anal Chem 90, 10721076. doi:10.1021/acs.analchem.7b04591CrossRefGoogle ScholarPubMed
Hua, X, Szymanski, C, Wang, Z, Zhou, Y, Ma, X, Yu, J, Evans, J, Orr, G, Liu, S, Zhu, Z & Yu, X-Y (2016). Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy. Integr Biol 8, 635644. doi:10.1039/c5ib00308cCrossRefGoogle Scholar
Huber, K, Feuchtinger, A, Borgmann, DM, Li, Z, Aichler, M, Hauck, SM, Zitzelsberger, H, Schwaiger, M, Keller, U & Walch, A (2014). Novel approach of MALDI drug imaging, immunohistochemistry, and digital image analysis for drug distribution studies in tissues. Anal Chem 86, 1056810575. doi:10.1021/ac502177yCrossRefGoogle ScholarPubMed
Jackson, SN & Woods, AS (2009). Direct profiling of tissue lipids by MALDI-TOFMS. J Chromatogr B 877, 28222829.CrossRefGoogle ScholarPubMed
Jadoul, L, Longuespée, R, Noël, A & De Pauw, E (2015). A spiked tissue-based approach for quantification of phosphatidylcholines in brain section by MALDI mass spectrometry imaging. Anal Bioanal Chem 407, 20952106. doi:10.1007/s00216-014-8232-7CrossRefGoogle ScholarPubMed
Jiang, H, Passarelli, MK, Munro, PMG, Kilburn, MR, West, A, Dollery, CT, Gilmore, IS & Rakowska, PD (2017). High-resolution sub-cellular imaging by correlative NanoSIMS and electron microscopy of amiodarone internalisation by lung macrophages as evidence for drug-induced phospholipidosis. Chem Commun 53, 15061509. doi:10.1039/C6CC08549KCrossRefGoogle ScholarPubMed
Jones, EA, Lockyer, NP & Vickerman, JC (2007). Mass spectral analysis and imaging of tissue by ToF-SIMS – the role of buckminsterfullerene, C60+, primary ions. Int J Mass Spectrom 260, 146157.CrossRefGoogle Scholar
Jones, EA, Lockyer, NP & Vickerman, JC (2008). Depth profiling brain tissue sections with a 40 keV C60+ primary Ion beam. Anal Chem 80, 21252132. doi:10.1021/ac702127qCrossRefGoogle ScholarPubMed
Jove, M, Spencer, J, Clench, M, Loadman, PM & Twelves, C (2019). Precision pharmacology: Mass spectrometry imaging and pharmacokinetic drug resistance. Crit Rev Oncol Hematol 141, 153162.CrossRefGoogle ScholarPubMed
Kadar, H, Le Douaron, G, Amar, M, Ferrié, L, Figadère, B, Touboul, D, Brunelle, A & Raisman-Vozari, R (2014). MALDI mass spectrometry imaging of 1-methyl-4-phenylpyridinium (MPP+) in mouse brain. Neurotox Res 25, 135145. doi:10.1007/s12640-013-9449-5CrossRefGoogle Scholar
Kang, HS, Lee, SC, Park, YS, Jeon, YE, Lee, JH, Jung, S-Y, Park, IH, Jang, SH, Park, HM, Yoo, CW, Park, SH, Han, SY, Kim, KP, Kim, YH, Ro, J & Kim, HK (2011). Protein and lipid MALDI profiles classify breast cancers according to the intrinsic subtype. BMC Cancer 11, 465. doi:10.1186/1471-2407-11-465.CrossRefGoogle Scholar
Karas, M (1996). Matrix-assisted laser desorption ionization MS: A progress report. Biochem Soc Trans 24, 897900.CrossRefGoogle ScholarPubMed
Karas, M, Bachmann, D, Bahr, U & Hillenkamp, F (1987). Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Processes 78, 5368.CrossRefGoogle Scholar
Karas, M, Bachmann, D & Hillenkamp, F (1985). Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57, 29352939. doi:10.1021/ac00291a042CrossRefGoogle Scholar
Karlsson, O & Hanrieder, J (2017). Imaging mass spectrometry in drug development and toxicology. Arch Toxicol 91, 22832294. doi:10.1007/s00204-016-1905-6CrossRefGoogle ScholarPubMed
Karlsson, O, Lindquist, NG, Brittebo, EB & Roman, E (2009a). Selective brain uptake and behavioral effects of the cyanobacterial toxin BMAA (β-N-methylamino-L-alanine) following neonatal administration to rodents. Toxicol Sci 109, 286295. doi:10.1093/toxsci/kfp062CrossRefGoogle Scholar
Karlsson, O, Roman, E, Berg, A-L & Brittebo, EB (2011). Early hippocampal cell death, and late learning and memory deficits in rats exposed to the environmental toxin BMAA (β-N-methylamino-l-alanine) during the neonatal period. Behav. Brain Res 219, 310320.CrossRefGoogle Scholar
Karlsson, O, Roman, E & Brittebo, EB (2009b). Long-term cognitive impairments in adult rats treated neonatally with β-N-methylamino-L-alanine. Toxicol Sci 112, 185195. doi:10.1093/toxsci/kfp196CrossRefGoogle Scholar
Kaya, I, Brinet, D, Michno, W, Syvänen, S, Sehlin, D, Zetterberg, H, Blennow, K & Hanrieder, J (2017). Delineating amyloid plaque associated neuronal sphingolipids in transgenic Alzheimer's disease mice (tgArcSwe) using MALDI imaging mass spectrometry. ACS Chem Neurosci 8, 347355. doi:10.1021/acschemneuro.6b00391CrossRefGoogle ScholarPubMed
Keren, S, Zavaleta, C, Cheng, Z, de la Zerda, A, Gheysens, O & Gambhir, SS (2008). Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci U S A 105, 58445849.CrossRefGoogle ScholarPubMed
Kern, C, Quade, M, Ray, S, Thomas, J, Schumacher, M, Gemming, T, Gelinsky, M, Alt, V & Rohnke, M (2019). Investigation of strontium transport and strontium quantification in cortical rat bone by time-of-flight secondary ion mass spectrometry. J R Soc Interface 16, 20180638. doi:10.1098/rsif.2018.0638.CrossRefGoogle ScholarPubMed
Kezutyte, T, Desbenoit, N, Brunelle, A & Briedis, V (2013). Studying the penetration of fatty acids into human skin by ex vivo TOF-SIMS imaging. Biointerphases 8, 3. doi:10.1186/1559-4106-8-3.CrossRefGoogle ScholarPubMed
Khatib-Shahidi, S, Andersson, M, Herman, JL, Gillespie, TA & Caprioli, RM (2006). Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78, 64486456. doi:10.1021/ac060788pCrossRefGoogle ScholarPubMed
Kim, JH, Kim, JH, Ahn, BJ, Park, J-H, Shon, HK, Yu, YS, Moon, DW, Lee, TG & Kim, K-W (2008). Label-Free calcium imaging in ischemic retinal tissue by TOF-SIMS. Biophys J 94, 40954102.CrossRefGoogle ScholarPubMed
Kim, SH, Kim, J, Lee, YJ, Lee, TG & Yoon, S (2017). Sample preparation of corn seed tissue to prevent analyte relocations for mass spectrometry imaging. J Am Soc Mass Spectrom 28, 17291732.CrossRefGoogle ScholarPubMed
Kim, Y-P, Shon, HK, Shin, SK & Lee, TG (2015). Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry. Mass Spectrom Rev 34, 237247. doi:10.1002/mas.21437CrossRefGoogle ScholarPubMed
Kjellström, S & Jensen, ON (2004). Phosphoric acid as a matrix additive for MALDI MS analysis of phosphopeptides and phosphoproteins. Anal Chem 76, 51095117. doi:10.1021/ac0400257CrossRefGoogle ScholarPubMed
Korte, AR & Lee, YJ (2014). MALDI-MS analysis and imaging of small molecule metabolites with 1,5-diaminonaphthalene (DAN). J Mass Spectrom 49, 737741. doi:10.1002/jms.3400CrossRefGoogle Scholar
Kulp, KS, Berman, ESF, Knize, MG, Shattuck, DL, Nelson, EJ, Wu, L, Montgomery, JL, Felton, JS & Wu, KJ (2006). Chemical and biological differentiation of three human breast cancer cell types using time-of-flight secondary Ion mass spectrometry. Anal Chem 78, 36513658. doi:10.1021/ac060054cCrossRefGoogle ScholarPubMed
Lagarrigue, M, Lavigne, R, Tabet, E, Genet, V, Thomé, J-P, Rondel, K, Guével, B, Multigner, L, Samson, M & Pineau, C (2014). Localization and in situ absolute quantification of chlordecone in the mouse liver by MALDI imaging. Anal Chem 86, 57755783. doi:10.1021/ac500313sCrossRefGoogle ScholarPubMed
Lamy, B, Sundqvist, M & Idelevich, EA (2020). Bloodstream infections – standard and progress in pathogen diagnostics. Clin Microbiol Infect 26, 142150.CrossRefGoogle ScholarPubMed
Lapolla, A, Fedele, D, Aronica, R, Garbeglio, M, D'Alpaos, M, Plebani, M, Seraglia, R & Traldi, P (1997). A highly specific method for the characterization of glycation and glyco-oxidation products of globins. Rapid Commun Mass Spectrom 11, 613617. doi:10.1002/(SICI)1097-0231(199704)11:6%3C613::AID-RCM907%3E3.0.CO3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Lay, JO Jr. (2001). MALDI-TOF mass spectrometry of bacteria*. Mass Spectrom Rev 20, 172194. doi:10.1002/mas.10003.CrossRefGoogle ScholarPubMed
Lee, GK, Lee, HS, Park, YS, Lee, JH, Lee, SC, Lee, JH, Lee, SJ, Shanta, SR, Park, HM, Kim, HR, Kim, IH, Kim, YH, Zo, JI, Kim, KP & Kim, HK (2012). Lipid MALDI profile classifies non-small cell lung cancers according to the histologic type. Lung Cancer 76, 197203. doi:10.1016/j.lungcan.2011.10.016CrossRefGoogle Scholar
Lee, P-L, Chen, B-C, Gollavelli, G, Shen, S-Y, Yin, Y-S, Lei, S-L, Jhang, C-L, Lee, W-R & Ling, Y-C (2014). Development and validation of TOF-SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells. J Hazard Mater 277, 312.CrossRefGoogle ScholarPubMed
Lemaire, R, Tabet, JC, Ducoroy, P, Hendra, JB, Salzet, M & Fournier, I (2006). Solid ionic matrixes for direct tissue analysis and MALDI imaging. Anal Chem 78, 809819. doi:10.1021/ac0514669CrossRefGoogle ScholarPubMed
Leo, BF, Fearn, S, Gonzalez-Cater, D, Theodorou, I, Ruenraroengsak, P, Goode, AE, McPhail, D, Dexter, DT, Shaffer, M, Chung, KF, Porter, AE & Ryan, MP (2019). Label-free time-of-flight secondary ion mass spectrometry imaging of sulfur-producing enzymes inside microglia cells following exposure to silver nanowires. Anal Chem 91, 1109811107. doi:10.1021/acs.analchem.9b01704CrossRefGoogle ScholarPubMed
Leopold, J, Popkova, Y, Engel, KM & Schiller, J (2018). Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules 8, 173.CrossRefGoogle ScholarPubMed
Li, H-W, Hu, Z, Chen, X, Ren, J, Cui, H, Zhang, M, Chen, L, Hua, X, Song, J & Long, Y-T (2021). Investigation of lipid metabolism in dynamic progression of coronary artery atherosclerosis of humans by time-of-flight secondary Ion mass spectrometry. Anal Chem 93, 38393847. doi:10.1021/acs.analchem.0c04367CrossRefGoogle ScholarPubMed
Li, L, Garden, RW & Sweedler, JV (2000). Single-cell MALDI: A new tool for direct peptide profiling. Trends Biotechnol 18, 151160. doi:10.1016/S0167-7799(00)01427-XCrossRefGoogle ScholarPubMed
Liu, X & Hummon, AB (2016). Chemical imaging of platinum-based drugs and their metabolites. Sci Rep 6, 38507. doi:10.1038/srep38507.CrossRefGoogle ScholarPubMed
Liu, X, Lukowski, JK, Flinders, C, Kim, S, Georgiadis, RA, Mumenthaler, SM & Hummon, AB (2018). MALDI-MSI of immunotherapy: Mapping the EGFR-targeting antibody cetuximab in 3D colon-cancer cell cultures. Anal Chem 90, 1415614164. doi:10.1021/acs.analchem.8b02151CrossRefGoogle ScholarPubMed
Liu, X, Weaver, EM & Hummon, AB (2013). Evaluation of therapeutics in three-dimensional cell culture systems by MALDI imaging mass spectrometry. Anal Chem 85, 62956302. doi:10.1021/ac400519cCrossRefGoogle ScholarPubMed
Liu, Y, Chen, Y, Momin, A, Shaner, R, Wang, E, Bowen, NJ, Matyunina, LV, Walker, LD, McDonald, JF, Sullards, MC & Merrill, AH (2010). Elevation of sulfatides in ovarian cancer: An integrated transcriptomic and lipidomic analysis including tissue-imaging mass spectrometry. Molecular Cancer 9, 186. doi:10.1186/1476-4598-9-186.CrossRefGoogle ScholarPubMed
Lukowski, JK, Weaver, EM & Hummon, AB (2017). Analyzing liposomal drug delivery systems in three-dimensional cell culture models using MALDI imaging mass spectrometry. Anal Chem 89, 84538458. doi:10.1021/acs.analchem.7b02006CrossRefGoogle ScholarPubMed
Magnusson, YK, Friberg, P, Sjövall, P, Malm, J & Chen, Y (2008). TOF-SIMS analysis of lipid accumulation in the skeletal muscle of ob/ob mice. Obesity 16, 27452753. doi:10.1038/oby.2008.424CrossRefGoogle ScholarPubMed
Mai, F-D, Chen, B-J, Wu, L-C, Li, F-Y & Chen, W-K (2006). Imaging of single liver tumor cells intoxicated by heavy metals using ToF-SIMS. Appl Surf Sci 252, 68096812.CrossRefGoogle Scholar
Mains, J, Wilson, CG & Urquhart, A (2011). ToF-SIMS analysis of dexamethasone distribution in the isolated perfused Eye. Invest Ophthalmol Visual Sci 52, 84138419. doi:10.1167/iovs.11-8199CrossRefGoogle ScholarPubMed
Malmberg, P, Börner, K, Chen, Y, Friberg, P, Hagenhoff, B, Månsson, J-E & Nygren, H (2007). Localization of lipids in the aortic wall with imaging TOF-SIMS. Biochim Biophys Acta 1771, 185195.CrossRefGoogle ScholarPubMed
Mazel, V, Richardin, P, Touboul, D, Brunelle, A, Richard, C, Laval, E, Walter, P & Laprévote, O (2010). Animal urine as painting materials in african rock art revealed by cluster ToF-SIMS mass spectrometry imaging. J Mass Spectrom 45, 944950. doi:10.1002/jms.1789CrossRefGoogle ScholarPubMed
Mbughuni, MM, Jannetto, PJ & Langman, LJ (2016). Mass spectrometry applications for toxicology. EJIFCC 27, 272287.Google ScholarPubMed
McDonnell, LA & Heeren, RMA (2007). Imaging mass spectrometry. Mass Spectrom Rev 26, 606643. doi:10.1002/mas.20124CrossRefGoogle ScholarPubMed
Mehainaoui, A, Menasria, T, Benouagueni, S, Benhadj, M, Lalaoui, R & Gacemi-Kirane, D (2021). Rapid screening and characterization of bacteria associated with hospital cockroaches (Blattella germanica L.) using MALDI-TOF mass spectrometry. Journal of Applied Microbiology 130, 960970. doi:10.1111/jam.14803CrossRefGoogle ScholarPubMed
Meistermann, H, Norris, JL, Aerni, HR, Cornett, DS, Friedlein, A, Erskine, AR, Augustin, A, De Vera Mudry, MC, Ruepp, S, Suter, L, Langen, H, Caprioli, RM & Ducret, A (2006). Biomarker discovery by imaging mass spectrometry: Transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat. Mol Cell Proteomics 5, 18761886.CrossRefGoogle ScholarPubMed
Miki, A, Katagi, M, Kamata, T, Zaitsu, K, Tatsuno, M, Nakanishi, T, Tsuchihashi, H, Takubo, T & Suzuki, K (2011). MALDI-TOF and MALDI-FTICR imaging mass spectrometry of methamphetamine incorporated into hair. J Mass Spectrom 46, 411416. doi:10.1002/jms.1908CrossRefGoogle ScholarPubMed
Mohamed, A, Saavedra, L, Di Pardo, A, Sipione, S & Posse de Chaves, E (2012). β-amyloid inhibits protein prenylation and induces cholesterol sequestration by impairing SREBP-2 cleavage. J Neurosci 32, 64906500CrossRefGoogle ScholarPubMed
Morosi, L, Matteo, C, Ceruti, T, Giordano, S, Ponzo, M, Frapolli, R, Zucchetti, M, Davoli, E, D'Incalci, M & Ubezio, P (2020). Quantitative determination of niraparib and olaparib tumor distribution by mass spectrometry imaging. Int J Biol Sci 16, 13631375.CrossRefGoogle ScholarPubMed
Moyer, BR, Cheruvu, NPS & Hu, TC-C (2014). Pharmaco-Imaging in Drug and Biologics Development. Available at http://link.springer.com/10.1007/978-1-4614-8247-5.CrossRefGoogle Scholar
Mueller, L, Traub, H, Jakubowski, N, Drescher, D, Baranov, VI & Kneipp, J (2014). Trends in single-cell analysis by use of ICP-MS. Anal Bioanal Chem 406, 69636977. doi:10.1007/s00216-014-8143-7CrossRefGoogle ScholarPubMed
Muir, ER, Ndiour, IJ, Le Goasduff, NA, Moffitt, RA, Liu, Y, Sullards, MC, Merrill, AH, Chen, Y & Wang, MD (2007). Multivariate analysis of imaging mass spectrometry data. In 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering, pp. 472479. Boston, MA, USA. doi:10.1109/BIBE.2007.4375603.CrossRefGoogle Scholar
Muramoto, S, Graham, DJ, Wagner, MS, Lee, TG, Moon, DW & Castner, DG (2011). ToF-SIMS analysis of adsorbed proteins: Principal component analysis of the primary ion species effect on the protein fragmentation patterns. J Phys Chem C 115, 2424724255. doi:10.1021/jp208035xCrossRefGoogle ScholarPubMed
Murphy, P & Koh, D-M (2010). Imaging in clinical trials. Cancer Imag 10, S74S82.CrossRefGoogle ScholarPubMed
Murphy, RC, Hankin, JA & Barkley, RM (2009). Imaging of lipid species by MALDI mass spectrometry. J Lipid Res 50(Suppl), S317S322.Google ScholarPubMed
Nilsson, A, Fehniger, TE, Gustavsson, L, Andersson, M, Kenne, K, Marko-Varga, G & Andrén, PE (2010). Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS One 5, e11411e11411.CrossRefGoogle ScholarPubMed
Nilsson, A, Goodwin, RJA, Shariatgorji, M, Vallianatou, T, Webborn, PJH & Andrén, PE (2015). Mass spectrometry imaging in drug development. Anal Chem 87, 14371455. doi:10.1021/ac504734sCrossRefGoogle ScholarPubMed
Noun, M, Van Elslande, E, Touboul, D, Glanville, H, Bucklow, S, Walter, P & Brunelle, A (2016). High mass and spatial resolution mass spectrometry imaging of nicolas poussin painting cross section by cluster TOF-SIMS. J Mass Spectrom 51, 11961210.Google ScholarPubMed
Ntshangase, S, Mdanda, S, Naicker, T, Kruger, HG, Baijnath, S & Govender, T (2019). Spatial distribution of elvitegravir and tenofovir in rat brain tissue: Application of matrix-assisted laser desorption/ionization mass spectrometry imaging and liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 33, 16431651. doi:10.1002/rcm.8510CrossRefGoogle ScholarPubMed
Ntshangase, S, Mdanda, S, Naicker, T, Kruger, HG, Baijnath, S & Govender, T (2019). Spatialdistribution of elvitegravir and tenofovir in rat brain tissue: Application ofmatrix-assisted laser desorption/ionization mass spectrometry imaging and liquidchromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 33, 16431651. doi:10.1002/rcm.8510.CrossRefGoogle Scholar
Pabst, M, Fagerer, SR, Köhling, R, Eyer, K, Krismer, J, Jefimovs, K, Ibáñez, AJ & Zenobi, R (2014). Quantification of saquinavir from lysates of peripheral blood mononuclear cells using microarrays and standard MALDI-TOF-MS. J Am Soc Mass Spectrom 25, 10831086. doi:10.1007/s13361-014-0875-2CrossRefGoogle ScholarPubMed
Pacholski, ML, Cannon, DM Jr., Ewing, AG & Winograd, N (1998). Static time-of-flight secondary ion mass spectrometry imaging of freeze-fractured, frozen-hydrated biological membranes. Rapid Commun Mass Spectrom 12, 12321235. doi:10.1002/(SICI)1097-0231(19980930)12:18%3C1232::AID-RCM319%3E3.0.CO3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Palmer, AD & Alexandrov, T (2015). Serial 3D imaging mass spectrometry at Its tipping point. Anal Chem 87, 40554062. doi:10.1021/ac504604gCrossRefGoogle ScholarPubMed
Park, E-S, Lee, JH, Hong, JH, Park, YK, Lee, JW, Lee, W-J, Lee, JW, Kim, KP & Kim, K-H (2014). Phosphatidylcholine alteration identified using MALDI imaging MS in HBV-infected mouse livers and virus-mediated regeneration defects. PLoS One 9, e103955.CrossRefGoogle ScholarPubMed
Park, J-W, Shon, HK, Yoo, BC, Kim, IH, Moon, DW & Lee, TG (2008). Differentiation between human normal colon mucosa and colon cancer tissue using ToF-SIMS imaging technique and principal component analysis. Appl Surf Sci 255, 11191122.CrossRefGoogle Scholar
Park, YS, Yoo, CW, Lee, SC, Park, SJ, Oh, JH, Yoo, BC, Paik, SS, Lee, KG, Jin, SY, Kim, SC, Kim, KP, Kim, YH, Choi, D & Kim, HK (2011). Lipid profiles for intrahepatic cholangiocarcinoma identified using matrix-assisted laser desorption/ionization mass spectrometry. Clin Chim Acta 412, 19781982.Google ScholarPubMed
Passarelli, MK, Newman, CF, Marshall, PS, West, A, Gilmore, IS, Bunch, J, Alexander, MR & Dollery, CT (2015). Single-cell analysis: Visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass spectrometry imaging. Anal Chem 87, 66966702. doi:10.1021/acs.analchem.5b00842CrossRefGoogle ScholarPubMed
Passarelli, MK, Pirkl, A, Moellers, R, Grinfeld, D, Kollmer, F, Havelund, R, Newman, CF, Marshall, PS, Arlinghaus, H, Alexander, MR, West, A, Horning, S, Niehuis, E, Makarov, A, Dollery, CT & Gilmore, IS (2017). The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat Methods 14, 11751183. doi:10.1038/nmeth.4504Google ScholarPubMed
Passarelli, MK & Winograd, N (2011 a). Characterizing in situ glycerophospholipids with SIMS and MALDI methodologies. Surf Interf Anal 43, 269271.CrossRefGoogle ScholarPubMed
Passarelli, MK & Winograd, N (2011 b). Lipid imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Biochim Biophys Acta 1811, 976990.CrossRefGoogle Scholar
Patterson, NH, Yang, E, Kranjec, E-A & Chaurand, P (2019). Co-registration and analysis of multiple imaging mass spectrometry datasets targeting different analytes. Bioinformatics 35, 12611262. doi:10.1093/bioinformatics/bty780CrossRefGoogle ScholarPubMed
Peng, J, Yang, F, Xiong, Z, Guo, J, Du, J, Hu, Y & Jin, Q (2013). Sensitive and rapid detection of viruses associated with hand foot and mouth disease using multiplexed MALDI-TOF analysis. J Clin Virol 56, 170174.Google ScholarPubMed
Peterson, DS (2007). Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom Rev 26, 1934. doi:10.1002/mas.20104CrossRefGoogle ScholarPubMed
Philipsen, MH, Phan, NTN, Fletcher, JS & Ewing, AG (2020). Interplay between cocaine, drug removal, and methylphenidate reversal on phospholipid alterations in Drosophila brain determined by imaging mass spectrometry. ACS Chem Neurosci 11, 806813. doi:10.1021/acschemneuro.0c00014CrossRefGoogle ScholarPubMed
Philipsen, MH, Phan, NTN, Fletcher, JS, Malmberg, P & Ewing, AG (2018). Mass spectrometry imaging shows cocaine and methylphenidate have opposite effects on major lipids in Drosophila brain. ACS Chem Neurosci 9, 14621468. doi:10.1021/acschemneuro.8b00046CrossRefGoogle ScholarPubMed
Piao, J, Jiang, J, Xu, B, Wang, X, Guan, Y, Wu, W, Liu, L, Zhang, Y, Huang, X, Wang, P, Zhao, J, Kang, X, Jiang, H, Cao, Y, Zheng, Y, Jiang, Y, Li, Y, Yang, Y & Chen, W (2012). Simultaneous detection and identification of enteric viruses by PCR-mass assay. PLoS One 7, e42251. doi:10.1371/journal.pone.0042251.Google ScholarPubMed
Pirman, DA, Reich, RF, Kiss, A, Heeren, RMA & Yost, RA (2013). Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard. Anal Chem 85, 10811089. doi:10.1021/ac302960jGoogle ScholarPubMed
Piwowar, AM, Lockyer, NP & Vickerman, JC (2009). Salt effects on Ion formation in desorption mass spectrometry: An investigation into the role of alkali chlorides on peak suppression in time-of-flight-secondary ion mass spectrometry. Anal Chem 81, 10401048. doi:10.1021/ac8020888CrossRefGoogle ScholarPubMed
Pól, J, Strohalm, M, Havlíček, V & Volný, M (2010). Molecular mass spectrometry imaging in biomedical and life science research. Histochem Cell Biol 134, 423443.CrossRefGoogle ScholarPubMed
Porta, T, Grivet, C, Kraemer, T, Varesio, E & Hopfgartner, G (2011). Single hair cocaine consumption monitoring by mass spectrometric imaging. Anal Chem 83, 42664272. doi:10.1021/ac200610cGoogle ScholarPubMed
Prentice, BM, Chumbley, CW & Caprioli, RM (2017). Absolute quantification of rifampicin by MALDI imaging mass spectrometry using multiple TOF/TOF events in a single Laser shot. J Am Soc Mass Spectrom 28, 136144.CrossRefGoogle Scholar
Prideaux, B, Dartois, V, Staab, D, Weiner, DM, Goh, A, Via, LE, Barry, CE & Stoeckli, M (2011). High-Sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in Tuberculosis-infected rabbit lungs and granulomatous lesions. Anal Chem 83, 21122118. doi:10.1021/ac1029049CrossRefGoogle ScholarPubMed
Prideaux, B, Lenaerts, A & Dartois, V (2018). Imaging and spatially resolved quantification of drug distribution in tissues by mass spectrometry. Curr Opin Chem Biol 44, 93100.CrossRefGoogle ScholarPubMed
Proetto, MT, Callmann, CE, Cliff, J, Szymanski, CJ, Hu, D, Howell, SB, Evans, JE, Orr, G & Gianneschi, NC (2018). Tumor retention of enzyme-responsive Pt(II) drug-loaded nanoparticles imaged by nanoscale secondary ion mass spectrometry and fluorescence microscopy. ACS Central Science 4, 14771484. doi:10.1021/acscentsci.8b00444Google ScholarPubMed
Rao, AN, Vandencasteele, N, Gamble, LJ & Grainger, DW (2012). High-resolution epifluorescence and time-of-flight secondary ion mass spectrometry chemical imaging comparisons of single DNA microarray spots. Anal Chem 84, 1062810636. doi:10.1021/ac3019334Google ScholarPubMed
Reyzer, ML, Hsieh, Y, Ng, K, Korfmacher, WA & Caprioli, RM (2003). Direct analysis of drug candidates in tissue by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 38, 10811092. doi:10.1002/jms.525Google ScholarPubMed
Richardin, P, Mazel, V, Walter, P, Laprévote, O & Brunelle, A (2011). Identification of different copper green pigments in renaissance paintings by cluster-TOF-SIMS imaging analysis. J Am Soc Mass Spectrom 22, 17291736.CrossRefGoogle ScholarPubMed
Robinson, MA (2013). Chemical Analysis of Cells and Tissues with Time-of-Flight Secondary Ion Mass Spectrometry. Washington: University of Washington.Google Scholar
Robinson, MA & Castner, DG (2013). Characterization of sample preparation methods of NIH/3t3 fibroblasts for ToF-SIMS analysis. Biointerphases 8, 15. doi:10.1186/1559-4106-8-15.Google ScholarPubMed
Roddy, TP, Cannon, DM, Meserole, CA, Winograd, N & Ewing, AG (2002). Imaging of freeze-fractured cells with in situ fluorescence and time-of-flight secondary ion mass spectrometry. Anal Chem 74, 40114019. doi:10.1021/ac0255734Google ScholarPubMed
Rohner, TC, Staab, D & Stoeckli, M (2005). MALDI mass spectrometric imaging of biological tissue sections. Mech Ageing Dev 126, 177185.Google ScholarPubMed
Russo, C, Brickelbank, N, Duckett, C, Mellor, S, Rumbelow, S & Clench, MR (2018). Quantitative investigation of terbinafine hydrochloride absorption into a living skin equivalent model by MALDI-MSI. Anal Chem 90, 1003110038. doi:10.1021/acs.analchem.8b02648CrossRefGoogle ScholarPubMed
Rutland, CS (2008). Histological and histochemical methods. J Anat 213, 356.Google Scholar
Saito, K, Mitsutani, T, Imai, T, Matsushita, Y & Fukushima, K (2008). Discriminating the indistinguishable sapwood from heartwood in discolored ancient wood by direct molecular mapping of specific extractives using time-of-flight secondary ion mass spectrometry. Anal Chem 80, 15521557. doi:10.1021/ac7021162CrossRefGoogle ScholarPubMed
Schroder, DK (2006). Material and Device Semiconductor Material and Device. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
Schwamborn, K, Krieg, CR, Reska, M, Jakse, G, Knuechel, R & Wellmann, A (2007). Identifying prostate carcinoma by MALDI-imaging. Int J Mol Med 20, 155159. doi:10.3892/ijmm.20.2.155Google ScholarPubMed
Schwartz, SA, Reyzer, ML & Caprioli, RM (2003). Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: Practical aspects of sample preparation. J Mass Spectrom 38, 699708. doi:10.1002/jms.505CrossRefGoogle ScholarPubMed
Scott, AJ, Post, JM, Lerner, R, Ellis, SR, Lieberman, J, Shirey, KA, Heeren, RMA, Bindila, L & Ernst, RK (2017). Host-based lipid inflammation drives pathogenesis in Francisella infection. Proc Natl Acad Sci U S A 114, 12596 LP12512601.CrossRefGoogle ScholarPubMed
Seeley, EH & Caprioli, RM (2012). 3D imaging by mass spectrometry: A new frontier. Anal Chem 84, 21052110. doi:10.1021/ac2032707Google ScholarPubMed
Seyer, A, Cantiello, M, Bertrand-Michel, J, Roques, V, Nauze, M, Bézirard, V, Collet, X, Touboul, D, Brunelle, A & Coméra, C (2013). Lipidomic and spatio-temporal imaging of fat by mass spectrometry in mice duodenum during lipid digestion. PLoS One 8, e58224. doi:10.1371/journal.pone.0058224.CrossRefGoogle ScholarPubMed
Seyer, A, Einhorn, J, Brunelle, A & Laprévote, O (2010). Localization of flavonoids in seeds by cluster time-of-flight secondary ion mass spectrometry imaging. Anal Chem 82, 23262333. doi:10.1021/ac902528tCrossRefGoogle ScholarPubMed
Shanta, SR, Choi, CS, Lee, JH, Shin, CY, Kim, YJ, Kim, K-H & Kim, KP (2012). Global changes in phospholipids identified by MALDI MS in rats with focal cerebral ischemia. J Lipid Res 53, 18231831.CrossRefGoogle ScholarPubMed
Shen, M, Xiang, P, Shi, Y, Pu, H, Yan, H & Shen, B (2014). Mass imaging of ketamine in a single scalp hair by MALDI-FTMS. Anal Bioanal Chem 406, 46114616. doi:10.1007/s00216-014-7898-1Google Scholar
Shiea, J, Cho, Y-T, Lin, Y-H, Chang, C-W, Lo, L-H, Lee, Y-C, Ke, H-L, Wu, W-J & Wu, D-C (2008). Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to rapidly screen for albuminuria. Rapid Commun Mass Spectrom 22, 37543760. doi:10.1002/rcm.3792CrossRefGoogle ScholarPubMed
Shimma, S & Sugiura, Y (2014). Effective sample preparations in imaging mass spectrometry. Mass Spectrometry (Tokyo, Japan) 3, S0029S0029.CrossRefGoogle ScholarPubMed
Shobo, A, Baijnath, S, Bratkowska, D, Naiker, S, Somboro, AM, Bester, LA, Singh, SD, Naicker, T, Kruger, HG & Govender, T (2015). MALDI MSI and LC-MS/MS: Towards preclinical determination of the neurotoxic potential of fluoroquinolones. Drug Test Anal 8, 832838. doi:10.1002/dta.1862CrossRefGoogle ScholarPubMed
Signor, L, Varesio, E, Staack, RF, Starke, V, Richter, WF & Hopfgartner, G (2007). Analysis of erlotinib and its metabolites in rat tissue sections by MALDI quadrupole time-of-flight mass spectrometry. J Mass Spectrom 42, 900909. doi:10.1002/jms.1225Google ScholarPubMed
Singh, AV, Jungnickel, H, Leibrock, L, Tentschert, J, Reichardt, P, Katz, A, Laux, P & Luch, A (2020). ToF-SIMS 3d imaging unveils important insights on the cellular microenvironment during biomineralization of gold nanostructures. Sci Rep 10, 261. doi:10.1038/s41598-019-57136-w.CrossRefGoogle ScholarPubMed
Singhal, N, Kumar, M, Kanaujia, PK & Virdi, JS (2015). MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front Microbiol 6, 791.Google ScholarPubMed
Sjöholm, MIL, Dillner, J & Carlson, J (2008). Multiplex detection of human herpesviruses from archival specimens by using matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 46, 540545.CrossRefGoogle ScholarPubMed
Sjövall, P, Lausmaa, J & Johansson, B (2004). Mass spectrometric imaging of lipids in brain tissue. Anal Chem 76, 42714278. doi:10.1021/ac049389pGoogle ScholarPubMed
Smith, DR, Lorey, DR & Chandra, S (2004). Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent. Appl Surf Sci 231–232, 457461.CrossRefGoogle Scholar
Solé-Domènech, S, Sjövall, P, Vukojević, V, Fernando, R, Codita, A, Salve, S, Bogdanović, N, Mohammed, AH, Hammarström, P, Nilsson, KPR, LaFerla, FM, Jacob, S, Berggren, P-O, Giménez-Llort, L, Schalling, M, Terenius, L & Johansson, B (2013). Localization of cholesterol, amyloid and glia in Alzheimer's disease transgenic mouse brain tissue using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and immunofluorescence imaging. Acta Neuropathologica 125, 145157. doi:10.1007/s00401-012-1046-9CrossRefGoogle ScholarPubMed
Solon, EG & Kraus, L (2001). Quantitative whole-body autoradiography in the pharmaceutical industry: Survey results on study design, methods, and regulatory compliance. J Pharmacol Toxicol Methods 46, 7381.CrossRefGoogle Scholar
Solon, EG, Schweitzer, A, Stoeckli, M & Prideaux, B (2010). Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J 12, 1126.CrossRefGoogle ScholarPubMed
Sostarecz, AG, Sun, S, Szakal, C, Wucher, A & Winograd, N (2004). Depth profiling studies of multilayer films with a C60+ ion source. Appl Surf Sci 231–232, 179182.CrossRefGoogle Scholar
Stewart, MP & Buriak, JM (2000). Chemical and biological applications of porous silicon technology. Adv Mater 12, 859869. doi:10.1002/1521-4095(200006)12:12%3C859::AID-ADMA859%3E3.0.CO3.0.CO;2-0>CrossRefGoogle Scholar
Stoeckli, M, Chaurand, P, Hallahan, DE & Caprioli, RM (2001). Imaging mass spectrometry: A new technology for theanalysis of protein expression in mammalian tissues. Nat Med 7, 493496. doi:10.1038/86573.Google Scholar
Studer, D, Graber, W, Al-Amoudi, A & Eggli, P (2001). A new approach for cryofixation by high-pressure freezing. J Microsc 203, 285294. doi:10.1046/j.1365-2818.2001.00919.xCrossRefGoogle ScholarPubMed
Studer, D, Michel, M & Müller, M (1989). High pressure freezing comes of age. Scanning Microscopy. Supplement 3, 253259.Google ScholarPubMed
Su, A-K, Liu, J-T & Lin, C-H (2005). Rapid drug-screening of clandestine tablets by MALDI-TOF mass spectrometry. Talanta 67, 718724.CrossRefGoogle ScholarPubMed
Sugimoto, M, Wakabayashi, M, Shimizu, Y, Yoshioka, T, Higashino, K, Numata, Y, Okuda, T, Zhao, S, Sakai, S, Igarashi, Y & Kuge, Y (2016). Imaging mass spectrometry reveals acyl-chain- and region-specific sphingolipid metabolism in the kidneys of sphingomyelin synthase 2-deficient mice. PLoS One 11, e0152191e0152191.Google ScholarPubMed
Sugiura, Y, Setou, M & Horigome, D (2010). Methods of Matrix Application BT – Imaging Mass Spectrometry: Protocols for Mass Microscopy, Setou, M (Ed.), pp. 7185. Tokyo: Springer Japan. doi:10.1007/978-4-431-09425-8_6.CrossRefGoogle Scholar
Tahallah, N, Brunelle, A, De La Porte, S & Laprévote, O (2008). Lipid mapping in human dystrophic muscle by cluster-time-of-flight secondary ion mass spectrometry imaging. J Lipid Res 49, 438454.CrossRefGoogle ScholarPubMed
Takai, N, Tanaka, Y & Saji, H (2014). Quantification of small molecule drugs in biological tissue sections by imaging mass spectrometry using surrogate tissue-based calibration standards. Mass Spectrometry (Tokyo, Japan) 3, A0025A0025.CrossRefGoogle ScholarPubMed
Takai, N, Tanaka, Y, Watanabe, A & Saji, H (2013). Quantitative imaging of a therapeutic peptide in biological tissue sections by MALDI MS. Bioanalysis 5, 603612. doi:10.4155/bio.13.13CrossRefGoogle ScholarPubMed
Tanaka, K, Waki, H, Ido, Y, Akita, S, Yoshida, Y, Yoshida, T & Matsuo, T (1988). Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2, 151153. doi:10.1002/rcm.1290020802CrossRefGoogle Scholar
Tang, W, Chen, J, Zhou, J, Ge, J, Zhang, Y, Li, P & Li, B (2019). Quantitative MALDI imaging of spatial distributions and dynamic changes of tetrandrine in multiple organs of rats. Theranostics 9, 932944.CrossRefGoogle ScholarPubMed
Tentschert, J, Draude, F, Jungnickel, H, Haase, A, Mantion, A, Galla, S, Thünemann, AF, Taubert, A, Luch, A & Arlinghaus, HF (2012). TOF-SIMS analysis of cell membrane changes in functional impaired human macrophages upon nanosilver treatment. Surf Interface Anal 45, 483485. doi:10.1002/sia.5155CrossRefGoogle Scholar
Thiel, V & Sjövall, P (2015). CHAPTER 5 time-of-flight secondary Ion mass spectrometry (TOF-SIMS): Principles and practice in the biogeosciences. In Principles and Practice of Analytical Techniques in Geosciences, pp. 122170. The Royal Society of Chemistry. doi:10.1039/9781782625025-00122.Google Scholar
Thomas, A, Charbonneau, JL, Fournaise, E & Chaurand, P (2012). Sublimation of New matrix candidates for high spatial resolution imaging mass spectrometry of lipids: Enhanced information in both positive and negative polarities after 1,5-diaminonapthalene deposition. Anal Chem 84, 20482054. doi:10.1021/ac2033547CrossRefGoogle ScholarPubMed
Thompson, RF, Walker, M, Siebert, CA, Muench, SP & Ranson, NA (2016). An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100, 315.CrossRefGoogle ScholarPubMed
Tian, H, Six, DA, Krucker, T, Leeds, JA & Winograd, N (2017). Subcellular chemical imaging of antibiotics in single bacteria using C60-secondary ion mass spectrometry. Anal Chem 89, 50505057. doi:10.1021/acs.analchem.7b00466Google ScholarPubMed
Tivol, WF, Briegel, A & Jensen, GJ (2008). An improved cryogen for plunge freezing. Microsc Microanal 14, 375379.CrossRefGoogle ScholarPubMed
Todd, PJ, Schaaff, TG, Chaurand, P & Caprioli, RM (2001). Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. J Mass Spectrom 36, 355369.CrossRefGoogle ScholarPubMed
Tost, J & Gut, IG (2002). Genotyping single nucleotide polymorphisms by mass spectrometry. Mass Spectrom Rev 21, 388418. doi:10.1002/mas.1009CrossRefGoogle ScholarPubMed
Touboul, D, Brunelle, A, Halgand, F, De La Porte, S & Laprévote, O (2005a). Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: Application to duchenne muscular dystrophy. J Lipid Res 46, 13881395.CrossRefGoogle Scholar
Touboul, D, Halgand, F, Brunelle, A, Kersting, R, Tallarek, E, Hagenhoff, B & Laprévote, O (2004). Tissue molecular ion imaging by gold cluster ion bombardment. Anal Chem 76, 15501559. doi:10.1021/ac035243zCrossRefGoogle ScholarPubMed
Touboul, D, Kollmer, F, Niehuis, E, Brunelle, A & Laprévote, O (2005b). Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J Am Soc Mass Spectrom 16, 16081618.CrossRefGoogle Scholar
Touboul, D, Roy, S, Germain, DP, Chaminade, P, Brunelle, A & Laprévote, O (2007). MALDI-TOF and cluster-TOF-SIMS imaging of fabry disease biomarkers. Int J Mass Spectrom 260, 158165.CrossRefGoogle Scholar
Vanbellingen, QP, Castellanos, A, Rodriguez-Silva, M, Paudel, I, Chambers, JW & Fernandez-Lima, FA (2016). Analysis of chemotherapeutic drug delivery at the single cell level using 3D-MSI-TOF-SIMS. J Am Soc Mass Spectrom 27, 20332040.CrossRefGoogle ScholarPubMed
Vanbellingen, QP, Elie, N, Eller, MJ, Della-Negra, S, Touboul, D & Brunelle, A (2015). Time-of-flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions. Rapid Communications in Mass Spectrometry: RCM 29, 11871195.CrossRefGoogle ScholarPubMed
van Kampen, JJA, Burgers, PC, de Groot, R, Osterhaus, ADME, Reedijk, ML, Verschuren, EJ, Gruters, RA & Luider, TM (2008a). Quantitative analysis of HIV-1 protease inhibitors in cell lysates using MALDI-FTICR mass spectrometry. Anal Chem 80, 37513756. doi:10.1021/ac702072cCrossRefGoogle Scholar
van Kampen, JJA, Burgers, PC, Gruters, RA, Osterhaus, ADME, de Groot, R, Luider, TM & Volmer, DA (2008b). Quantitative analysis of antiretroviral drugs in lysates of peripheral blood mononuclear cells using MALDI-triple quadrupole mass spectrometry. Anal Chem 80, 49694975. doi:10.1021/ac800218aCrossRefGoogle Scholar
Van Nuffel, S, Elie, N, Yang, E, Nouet, J, Touboul, D, Chaurand, P & Brunelle, A (2018). Insights into the MALDI process after matrix deposition by sublimation using 3D ToF-SIMS imaging. Anal Chem 90, 19071914. doi:10.1021/acs.analchem.7b03993CrossRefGoogle ScholarPubMed
Wang, C-C, Lai, Y-H, Ou, Y-M, Chang, H-T & Wang, Y-S (2016). Critical factors determining the quantification capability of matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry. Philos Trans Royal Soc A 374, 20150371. doi:10.1098/rsta.2015.0371.CrossRefGoogle ScholarPubMed
Weaver, EM & Hummon, AB (2013). Imaging mass spectrometry: From tissue sections to cell cultures. Adv Drug Delivery Rev 65, 10391055.CrossRefGoogle ScholarPubMed
Williams, TL, Andrzejewski, D, Lay, JO & Musser, SM (2003). Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J Am Soc Mass Spectrom 14, 342351.CrossRefGoogle ScholarPubMed
Wiseman, JM, Ifa, DR, Zhu, Y, Kissinger, CB, Manicke, NE, Kissinger, PT & Cooks, RG (2008). Desorption electrospray ionization mass spectrometry: Imaging drugs and metabolites in tissues. Proc Natl Acad Sci U S A 105, 1812018125.CrossRefGoogle ScholarPubMed
Wittig, A, Wiemann, M, Fartmann, M, Kriegeskotte, C, Arlinghaus, HF, Zierold, K & Sauerwein, W (2005). Preparation of cells cultured on silicon wafers for mass spectrometry analysis. Microsc Res Tech 66, 248258. doi:10.1002/jemt.20159CrossRefGoogle ScholarPubMed
Wolkers, W (2013). 085 Freeze-dried cells and tissues. Cryobiology 67. http://www.sciencedirect.com/science/article/pii/S0011224013003106 (Accessed May 12, 2017).CrossRefGoogle Scholar
Woods, AS & Jackson, SN (2006). Brain tissue lipidomics: Direct probing using matrix-assisted laser desorption/ionization mass spectrometry. AAPS J 8, E391E395.CrossRefGoogle ScholarPubMed
Wu, KJ & Odom, RW (1998). Peer reviewed: Characterizing synthetic polymers by MALDI MS. Anal Chem 70, 456A461A. doi:10.1021/ac981910qCrossRefGoogle Scholar
Xu, S, Li, Y, Zou, H, Qiu, J, Guo, Z & Guo, B (2003). Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 75, 61916195. doi:10.1021/ac0345695Google ScholarPubMed
Yamada, I, Matsuo, J, Toyoda, N & Kirkpatrick, A (2001). Materials processing by gas cluster ion beams. Mater Sci Eng R Rep 34, 231295.CrossRefGoogle Scholar
Yang, H-J, Sugiura, Y, Ikegami, K, Konishi, Y & Setou, M (2012). Axonal gradient of arachidonic acid-containing phosphatidylcholine and its dependence on actin dynamics. J Biol Chem 287, 52905300.CrossRefGoogle ScholarPubMed
Yang, J & Caprioli, RM (2011). Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal Chem 83, 57285734.CrossRefGoogle ScholarPubMed
Yi, J, Warunek, D & Craft, D (2015). Degradation and stabilization of peptide hormones in human blood specimens. PLoS One 10, e0134427. doi:10.1371/journal.pone.0134427.CrossRefGoogle ScholarPubMed
Yi, X, Li, J, Yu, S, Zhang, A, Xu, J, Yi, J, Zou, J, Nie, X, Huang, J & Wang, J (2011). A new PCR-based mass spectrometry system for high-risk HPV, part I: Methods. Am J Clin Pathol 136, 913919. doi:10.1309/AJCPWTZDT0Q7DOVICrossRefGoogle ScholarPubMed
Yoon, S & Lee, TG (2018). Biological tissue sample preparation for time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging. Nano Convergence 5, 24.CrossRefGoogle ScholarPubMed
Youn, S-C, Chen, L-Y, Chiou, R-J, Lai, T-J, Liao, W-C, Mai, F-D & Chang, H-M (2015). Comprehensive application of time-of-flight secondary Ion mass spectrometry (TOF-SIMS) for ionic imaging and bio-energetic analysis of club drug-induced cognitive deficiency. Sci Rep 5, 18420. doi:10.1038/srep18420.CrossRefGoogle ScholarPubMed
Zhang, Y, Zeng, W, Jia, F, Ye, J, Zhao, Y, Luo, Q, Zhu, Z & Wang, F (2020). Cisplatin-induced alteration on membrane composition of A549 cells revealed by ToF-SIMS. Surf Interface Anal 52, 256263. doi:10.1002/sia.6714CrossRefGoogle Scholar
Zürcher, S, Mooser, C, Lüthi, AU, Mühlemann, K, Barbani, MT, Mohacsi, P, Garzoni, C, Gorgievski-Hrisoho, M, Schaller, A & Flatz, L (2012). Sensitive and rapid detection of ganciclovir resistance by PCR based MALDI-TOF analysis. J Clin Virol 54, 359363.CrossRefGoogle ScholarPubMed