Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T05:55:41.845Z Has data issue: false hasContentIssue false

Casting Materials and their Application in Research and Teaching

Published online by Cambridge University Press:  25 February 2014

Kati Haenssgen
Affiliation:
Institute of Anatomy, University of Bern, Baltzerstrasse 2, Ch-3000 Bern 9, Switzerland
Andrew N. Makanya
Affiliation:
Institute of Anatomy, University of Bern, Baltzerstrasse 2, Ch-3000 Bern 9, Switzerland Department of Veterinary Anatomy & Physiology, Riverside Drive, Chiromo Campus, University of Nairobi, Box 30197-00100, Nairobi, Kenya
Valentin Djonov*
Affiliation:
Institute of Anatomy, University of Bern, Baltzerstrasse 2, Ch-3000 Bern 9, Switzerland
*
*Corresponding author. [email protected]
Get access

Abstract

From a biological point of view, casting refers to filling of anatomical and/or pathological spaces with extraneous material that reproduces a three-dimensional replica of the space. Casting may be accompanied by additional procedures such as corrosion, in which the soft tissue is digested out, leaving a clean cast, or the material may be mixed with radiopaque substances to allow x-ray photography or micro computed topography (µCT) scanning. Alternatively, clearing of the surrounding soft tissue increases transparency and allows visualization of the casted cavities. Combination of casting with tissue fixation allows anatomical dissection and didactic surgical procedures on the tissue. Casting materials fall into three categories namely, aqueous substances (India ink, Prussian blue ink), pliable materials (gelatins, latex, and silicone rubber), or hard materials (methyl methacrylates, polyurethanes, polyesters, and epoxy resins). Casting has proved invaluable in both teaching and research and many phenomenal biological processes have been discovered through casting. The choice of a particular material depends inter alia on the targeted use and the intended subsequent investigative procedures, such as dissection, microscopy, or µCT. The casting material needs to be pliable where anatomical and surgical manipulations are intended, and capillary-passable for ultrastructural investigations.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, M., Tsuda, A., Secomb, T.W., Mentzer, S.J. & Konerding, M.A. (2013). Intussusceptive remodeling of vascular branch angles in chemically-induced murine colitis. Microvasc Res, 87, 7582.CrossRefGoogle ScholarPubMed
Aharinejad, S.H. & Lametschwandtner, A. (1992). Corrosion casting-a historical review. In Microvascular Corrosion Casting in Scanning Electron Microscopy, Aharinejad, S.H. & Lametschwandtner, A. (Eds.), pp. 311. Vienna: Springer-Verlag.CrossRefGoogle ScholarPubMed
Akester, A.R. (1960). The comparative anatomy of the respiratory pathways in the domestic fowl (Gallus domesticus), pigeon (Columbia livia) and domestic duck (Anas platyrhynchos). J Anat, 94, 487505.Google Scholar
Alvernia, J.E., Pradilla, G., Mertens, P., Lanzino, G. & Tamargo, R.J. (2010). Latex injection of cadaver heads: Technical note. Neurosurgery, 67, 362367.Google Scholar
An, X., Yue, B., Lee, J.H., Lin, C. & Han, S.H. (2012). Arterial anatomy of the gracilis muscle as determined by latex injection and glycerin transparency. Clin Anat, 25, 231234.Google Scholar
Aultman, A., Blythe, A.J., Sowder, H., Trotter, R. & Raoof, A. (2003). Enhancing the value of organ silicone casts in human gross anatomy education. J Int Soc Plastination, 18, 913.Google Scholar
Benzioni, H., Shahar, R., Yudelevich, S., Shipov, A. & Milgram, J. (2009). Lateral thoracic artery axial pattern flap in cats. Vet Surg, 38, 112116.Google Scholar
Bergeron, L., Tang, M. & Morris, S.F. (2006). A review of vascular injection techniques for the study of perforator flaps. Plast Reconstr Surg, 117, 20502057.Google Scholar
Berrie, B.H. (1997). Prussian Blue. In Artists' Pigments: A Handbook of their History and Characteristics, Fitzhugh, E.W. (Ed.), pp. 191218. Washington, DC: National Gallery of Art.Google Scholar
Bertagnoli, A., Räber, M., Morandi, N., Mortellaro, C.M. & Steiner, A. (2012). Tenovaginoscopic approach to the common digital flexor tendon sheath of adult cattle: Technique, normal findings and preliminary results in four clinical cases. Vet J, 191, 121127.Google Scholar
Bickley, H.C., von Hagens, G. & Townsend, F.M. (1981). An improved method for the preservation of teaching specimens. Arch Pathol Lab Med, 105, 674676.Google ScholarPubMed
Bickley, H.C., Walker, A.N., Jackson, R.L. & Donner, R.S. (1987). Preservation of pathology specimens by silicone plastination. An innovative adjunct to pathology education. Am J Clin Pathol, 88, 220223.Google Scholar
Bidloo, G. (1685). Anatomia Humani Corporis. Amsterdam: Someren, Dyk, Hendrick & Boom.Google Scholar
Boyd, A.S., Benjamin, H.J. & Asplund, C. (2009 a). Principles of casting and splinting. Am Fam Physician, 79, 1622.Google Scholar
Boyd, A.S., Benjamin, H.J. & Asplund, C. (2009 b). Splints and casts: Indications and methods. Am Fam Physician, 80, 491499.Google Scholar
Braack, L.E. & de Vos, V. (1987). Seasonal abundance of carrion-frequenting blow-flies (Diptera: Calliphoridae) in the Kruger National Park. Onderstepoort J Vet Res, 54, 591597.Google Scholar
Breit, S., Kunzel, W. & Oppel, M. (2003). The course of the nasolacrimal duct in brachycephalic cats. Anat Histol Embryol, 32, 224227.Google Scholar
Caduff, J.H., Fischer, L.C. & Burri, P.H. (1986). Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec, 216, 154164.Google Scholar
Cheng, N.M., Pan, W.R., Vally, F., Le Roux, C.M. & Richardson, M.D. (2010). The arterial supply of the long head of biceps tendon: Anatomical study with implications for tendon rupture. Clin Anat, 23, 683692.Google Scholar
Chern, C.S. (2006). Emulsion polymerization mechanisms and kinetics. Prog Polym Sci, 31, 443486.CrossRefGoogle Scholar
Cooke, R. (2010). A moulage museum is not just a museum. Virchows Arch, 457, 513520.Google Scholar
Cope, L.A. (2008). Tracheobronchial cast production and use in an undergraduate human anatomy course. Anat Sci Educ, 1, 2326.CrossRefGoogle Scholar
Coquerel-Beghin, D., Milliez, P.Y., Auquit-Auckbur, I., Lemierre, G. & Duparc, F. (2006). The gracilis musculocutaneous flap: Vascular supply of the muscle and skin components. Surg Radiol Anat, 28, 588595.Google Scholar
Cordes, J. (1989). Korrosionstechnik. Der Präparator , 35, 2128.Google Scholar
Culling, C.F.A. (1974). Handbook of Histopathological and Histochemical Techniques (Including Museum Techniques). London: Butterworths.Google Scholar
De Sousa Bolina, C., De Sousa Bolina-Matos, R., De Matos Alves, P.H., Pulzato Cury, D., Ciena, A.P. & Watanabe, I.-S. (2013). Three-dimensional aspects of the structural characteristics and kidney angioarchitecture of adult and aged wistar rats: A scanning electron microscopy study. Microsc Res Tech, 76, 538544.Google Scholar
Dimova, I., Hlushchuk, R., Makanya, A., Styp-Rekowska, B., Ceausu, A., Flueckiger, S., Lang, S., Semela, D., Le Noble, F., Chatterjee, S. & Djonov, V. (2013). Inhibition of Notch signaling induces extensive intussusceptive neo-angiogenesis by recruitment of mononuclear cells. Angiogenesis, 16, 921937.Google Scholar
Fujimoto, M., Suzuki, H., Shiba, M., Shimojo, N., Imanaka-Yoshida, K., Yoshida, T., Kanamaru, K., Matsushima, S. & Taki, W. (2013). Tenascin-C induces prolonged constriction of cerebral arteries in rats. Neurobiol Dis, 55, 104109.Google Scholar
Gao, L., Wang, L., Su, B., Wang, P., Ye, J. & Shen, H. (2013). The vascular supply to the spinal cord and its relationship to anterior spine surgical approaches. Spine J, 13, 966973.Google Scholar
Geurtsen, W. (2002). Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med, 13, 7184.Google Scholar
Goodwin, M.B. & Chaney, D.S. (1994). Molding and casting: techniques and materials. In Vertebrate Paleontological Techniques, Leiggi, P. & May, P. (Eds.), pp. 235271. New York: Cambridge University Press.Google Scholar
Grabherr, S., Djonov, V., Yen, K., Thali, M.J. & Dirnhofer, R. (2007). Postmortem angiography: Review of former and current methods. AJR Am J Roentgenol, 188, 832838.Google Scholar
Grondin, G. (2005). Uses and abuses of the word 'plastination'. J Int Soc Plastination, 20, 45.Google Scholar
Grondin, G., Sianothai, A. & Olry, R. (2000). In situ ventricular casts of S10 plastinated human brains. J Int Soc Plastination, 15, 1821.Google Scholar
Groscurth, P., Eggli, P., Kapfhammer, J., Rager, G., Hornung, J.P. & Fasel, J.D.H. (2001). Gross anatomy in the surgical curriculum in Switzerland: Improved cadaver preservation, anatomical models, and course development. Anat Rec, 265, 254256.Google Scholar
Henry, R.W. (1992). Silicone tracheobronchial casts. J Int Soc Plastination, 6, 3840.Google Scholar
Henry, R.W., Daniel, G.B. & Reed, R.B. (1998). Silicone casting of the chambers of the heart and the great vessels. J Int Soc Plastination, 13, 1719.Google Scholar
Henry, R.W., Janick, L. & Henry, C. (1997). Specimen preparation for silicone plastination. J Int Soc Plastination, 12, 1317.Google Scholar
Hermiz, D.J., O'Sullivan, D.J., Lujan, H.L. & DiCarlo, S.E. (2011). Constructivist learning of anatomy: Gaining knowledge by creating anatomical casts. Anat Sci Educ, 4, 98104.Google Scholar
Heymans, O.Y., Nelissen, X.P., Peters, S., Lemaire, V. & Carlier, A. (2004). New approach to vascular injection in fresh cadaver dissection. J Reconstr Microsurg, 20, 311315.CrossRefGoogle ScholarPubMed
Hirschberg, R.M., Mulling, C.K. & Bragulla, H. (1999). Microvasculature of the bovine claw demonstrated by improved micro-corrosion-casting technique. Microsc Res Tech, 45, 184197.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Hlushchuk, R., Makanya, A.N. & Djonov, V. (2011). Escape mechanisms after antiangiogenic treatment, or why are the tumors growing again? Int J Dev Biol, 55, 563567.Google Scholar
Hlushchuk, R., Riesterer, O., Baum, O., Wood, J., Gruber, G. Pruschy, M. & Djonov, V. (2008). Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am J Pathol, 173, 11731185.Google Scholar
Hodde, K.C. & Nowell, J.A. (1980). SEM of micro-corrosion casts. Scan Electron Microsc, 89106.Google Scholar
Hossler, F.E. & Douglas, J.E. (2001). Vascular corrosion casting: Review of advantages and limitations in the application of some simple quantitative methods. Microsc Microanal, 7, 253264.Google Scholar
Hossler, F.E., Lametschwandtner, A., Kao, R. & Finsterbusch, F. (2013). Microvascular architecture of mouse urinary bladder described with vascular corrosion casting, light microscopy, SEM, and TEM. Microsc Microanal 13, 18.Google Scholar
Jacob, R.E., Colby, S.M., Kabilan, S., Einstein, D.R. & Carson, J.P. (2013). In situ casting and imaging of the rat airway tree for accurate 3D reconstruction. Exp Lung Res, 39, 249257.Google Scholar
Jamous, M.A., Nagahiro, S., Kitazato, K.T., Satoh, K. & Satomi, J. (2005). Vascular corrosion casts mirroring early morphological changes that lead to the formation of saccular cerebral aneurysm: An experimental study in rats. J Neurosurg, 102, 532535.CrossRefGoogle Scholar
Jaung, R., Cook, P. & Blyth, P. (2011). A comparison of embalming fluids for use in surgical workshops. Clin Anat, 24, 155561.Google Scholar
John, B., Ghani, K.R., Patel, U. & Anson, K. (2008). Resin polymer and corrosion casting of the porcine pelvi-calyceal system: a useful model for investigating new imaging and endoscopic techniques of the upper urinary tract. Urol Res, 36, 3942.Google Scholar
Kachlik, D., Baca, V. & Stingl, J. (2010). The spatial arrangement of the human large intestinal wall blood circulation. J Anat, 216, 335343.Google Scholar
Kappler, U.A., Constantinescu, M.A., Buchler, U. & Vogelin, E. (2005). Anatomy of the proximal cutaneous perforator vessels of the gracilis muscle. Brit J Plast Surg, 58, 445448.CrossRefGoogle ScholarPubMed
Kawarada, Y., Das, B.C., Onishi, H., Taoka, H., Gadzijev, E.M., Ravnik, D., Tabata, M. & Isaji, S. (2000). Surgical anatomy of the bile duct branches of the medial segment (B4) of the liver in relation to hilar carcinoma. J Hepatobiliary Pancreat Surg, 7, 480485.Google Scholar
Kaya, A.H., Sam, B., Celik, F. & Ture, U. (2006). A quick-solidifying, coloured silicone mixture for injecting into brains for autopsy: Technical report. Neurosurg Rev, 29, 322326. discusson 326.Google Scholar
Kemp, M. (2010). Style and non-style in anatomical illustration: From Renaissance Humanism to Henry Gray. J Anat, 216, 192208.Google Scholar
Kerckaert, I., Van Hoof, T., Pattyn, P. & D’Herde, K. (2008). Endogent: Centre for anatomy and invasive techniques. Anatomy, 2, 2833.Google Scholar
Khot, Z., Quinlan, K., Norman, G.R. & Wainman, B. (2013). The relative effectiveness of computer-based and traditional resources for education in anatomy. Anat Sci Educ, 6, 211215.Google Scholar
Kolts, I., Tillmann, B. & Lullmann-Rauch, R. (1994). The structure and vascularization of the biceps brachii long head tendon. Ann Anat, 176, 7580.Google Scholar
Krucker, T., Lang, A. & Meyer, E.P. (2006). New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics. Microsc Res Tech, 69, 138147.Google Scholar
Latorre, R., Vazquez, J.M., Gil, F., Ramirez, G., Lopez-Albors, O., Orenes, M., Martinez-Gomariz, F. & Arenciba, A. (2001). Teaching anatomy of the distal equine thoracic limb with plastinated slices. J Int Soc Plastination, 16, 2330.Google Scholar
Leiser, R. & Pfarrer, C.D. (2005). Analysis of fetal and maternal microvasculature in ruminant placentomes by corrosion casting. In Placenta and Trophoblast: Methods and Protocols , Soares, M.J. & Hunt, J.S. (Eds.), pp. 393407. New York: Humana Press Inc.Google Scholar
Magden, O., Edizer, M., Atabey, A., Tayfur, V. & Ergur, I. (2004). Cadaveric study of the arterial anatomy of the upper lip. Plast Reconstr Surg, 114, 355359.Google Scholar
Maina, J.N. & van Gils, P. (2001). Morphometric characterization of the airway and vascular systems of the lung of the domestic pig, Sus scrofa: Comparison of the airway, arterial and venous systems. Comp Biochem Physiol A Mol Integr Physiol, 130, 781798.CrossRefGoogle ScholarPubMed
Makanya, A., Gachoka, J. & Kariuki, G.K. (2008). A short review of the methods used in museum technology. Bull Anim Health Prod Afr 56, 267269.Google Scholar
Makanya, A.N. & Djonov, V. (2008). Development and spatial organization of the air conduits in the lung of the domestic fowl, Gallus gallus variant domesticus. Microsc Res Tech, 71, 689702.Google Scholar
Makanya, A.N. & Djonov, V. (2009). Parabronchial angioarchitecture in developing and adult chickens. J Appl Physiol, 106, 19591969.Google Scholar
Makanya, A.N., Hlushchuk, R., Baum, O., Velinov, N., Ochs, M. & Djonov, V. (2007). Microvascular endowment in the developing chicken embryo lung. Am J Physiol Lung Cell Mol Physiol, 292, L1136L1146.Google Scholar
Makanya, A.N., Hlushchuk, R. & Djonov, V.G. (2009). Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis, 12, 113123.Google Scholar
Makanya, A.N., Kavoi, B.M. & Djonov, V. (2014). Three-Dimensional Structure and Disposition of the Air Conducting and Gas Exchange Conduits of the Avian Lung: The Domestic Duck (Cairina moschata). ISRN Anatomy, 2014 Article ID 621982, 9 pages, 2014. doi:10.1155/2014/621982.Google Scholar
Makanya, A.N., Sparrow, M.P., Warui, C.N., Mwangi, D.K. & Burri, P.H. (2001). Morphological analysis of the postnatally developing marsupial lung: The quokka wallaby. Anat Rec, 262, 253265.Google Scholar
Makanya, A.N., Stauffer, D., Ribatti, D., Burri, P.H. & Djonov, V. (2005). Microvascular growth, development, and remodeling in the embryonic avian kidney: The interplay between sprouting and intussusceptive angiogenic mechanisms. Microsc Res Tech, 66, 275288.Google Scholar
Masset, A., Staszyk, C. & Gasse, H. (2006). The blood vessel system in the periodontal ligament of the equine cheek teeth—Part I: The spatial arrangement in layers. Ann Anat, 188, 529533.Google Scholar
McKeon, K.E., Wright, R.W., Johnson, J.E., McCormick, J.J. & Klein, S.E. (2012). Vascular anatomy of the tibiofibular syndesmosis. J Bone Joint Surg Am, 94, 931938.Google Scholar
Meyer, E.P. (1989). Corrosion casts as a method for investigation of the insect tracheal system. Cell Tissue Res, 256, 16.Google Scholar
Meyer, E.P., Beer, G.M., Lang, A., Manestar, M., Krucker, T., Meier, S., Mihic-Probst, D. & Groscurth, P. (2007). Polyurethane elastomer: A new material for the visualization of cadaveric blood vessels. Clin Anat, 20, 448454.Google Scholar
Meyer, E.P., Ulmann-Schuler, A., Staufenbiel, M. & Staufenbiel, T. (2008). Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer's disease. P Natl Acad Sci USA, 105, 35873592.Google Scholar
Minnich, B. & Lametschwandtner, A. (2010). Scanning electron microscopy and vascular corrosion casting for the characterization of microvascular networks in human and animal tissues. In Microscopy: Science, Technology, Applications and Education, Méndez-Vilas, A. & Díaz, J. (Eds.), pp. 2939. Badajoz: Formatex.Google Scholar
Mulisch, M. & Welsch, U. (2010). Romeis Mikroskopische Technik. Heidelberg: Spektrum Akademischer Verlag.Google Scholar
Nikolic, V., Teofilovski-Parapid, G., Stankovic, G., Parapid, B., Malobabic, S. & Stojic, V. (2004). Third coronary artery in monkey heart. Acta Vet Hung, 52, 253257.Google Scholar
Ninomiya, H., Akiyama, E., Simazaki, K., Oguri, A., Jitsumoto, M. & Fukuyama, T. (2011). Functional anatomy of the footpad vasculature of dogs: Scanning electron microscopy of vascular corrosion casts. Vet Dermatol, 22, 475481.Google Scholar
Nöller, C., Henninger, W., Grönemeyer, D.H.W., Hirschberg, R.M. & Budras, K.D. (2006). Computed tomography: Anatomy of the normal feline nasolacrimal drainage system. Vet Radiol Ultrasoun, 47, 5360.Google Scholar
Ohkuma, H., Itoh, K., Shibata, S., Suzuki, S. (1997). Morphological changes of intraparenchymal arterioles after experimental subarachnoid hemorrhage in dogs. Neurosurgery, 41, 230235; discussion 235–236.Google Scholar
Onishi, H., Kawarada, Y., Das, B.C., Nakano, K., Gadzijev, E.M., Ravnik, D. & Isaji, S. (2000). Surgical anatomy of the medial segment (S4) of the liver with special reference to bile ducts and vessels. Hepatogastroenterology, 47, 143150.Google Scholar
Papakonstantinou, M.K., Pan, W.-R., le Roux, C.M. & Richardson, M.D. (2012). New approach to the study of intraosseous vasculature. Anz J Surg, 82, 704707.Google Scholar
Parke, W.W. (2004). Arteriovenous glomeruli of the human spinal cord and their possible functional implications. Clin Anat, 17, 558563.Google Scholar
Pereira-Sampaio, M.A., Henry, R.W., Favorito, L.A. & Sampaio, F.J. (2012). Cranial pole nephrectomy in the pig model: anatomic analysis of arterial injuries in tridimensional endocasts. J Endourol, 26, 716721.Google Scholar
Pereira-Sampaio, M.A., Marques-Sampaio, B.P., Sampaio, F.J. & Henry, R.W. (2011). Shrinkage of renal tissue after impregnation via the cold Biodur plastination technique. Anat Rec, 294, 14181422.Google Scholar
Perry, S.F., Purohit, A.M., Boser, S., Mitchell, I. & Green, F.H. (2000). Bronchial casts of human lungs using negative pressure injection. Exp Lung Res, 26, 2739.Google Scholar
Pinar, Y.A., Bilge, O. & Govsa, F. (2005). Anatomic study of the blood supply of perioral region. Clin Anat, 18, 330339.Google Scholar
Pitynski, K., Litwin, J.A., Richter, P. & Miodonski, A.J. (2012). Microvascular architecture of human epicolic and paracolic lymph nodes located in the vicinity of colon cancer: A SEM study of corrosion casts. Pathol Res Pract, 208, 9499.Google Scholar
Plaisant, O., Sarrazin, J.L., Gillot, C. & Lassau, J.P. (1998). Technique for injection of the lumbar vertebral venous plexuses employed in anatomic, computed tomography and magnetic resonance imaging studies. Surg Radiol Anat, 20, 113118.Google Scholar
Pollitt, C.C. & Molyneux, G.S. (1990). A scanning electron microscopical study of the dermal microcirculation of the equine foot. Equine Vet J, 22, 7987.Google Scholar
Preece, D., Williams, S.B., Lam, R. & Weller, R. (2013). “Let's Get Physical”: Advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anat Sci Educ, 6, 216224.Google Scholar
Pulvertaft, R.J. (1950). Museum techniques; a review. J Clin Pathol, 3, 123.Google Scholar
Ravi, S.B. & Bhat, V.M. (2011). Plastination: A novel, innovative teaching adjunct in oral pathology. J Oral Maxillofac Pathol, 15, 133137.CrossRefGoogle ScholarPubMed
Ravnik, D., Gadzijev, E., Sojar, M. & Stanisavljevic, D. (1995). Models of the epigastric cavity, the liver vessels and bile ducts as an anatomic and surgical teaching tool. Chirurg, 66, 448451.Google Scholar
Rees, M.J. & Taylor, G.I. (1986). A simplified lead oxide cadaver injection technique. Plast Reconstr Surg, 77, 141145.Google Scholar
Riepertinger, A. & Heuckendorf, E. (1993). E20 Color-Injection and plastination of the brain. J Int Soc Plastination, 7, 812.Google Scholar
Sanan, A., Abdel Aziz, K.M., Janjua, R.M., van Loveren, H.R. & Keller, J.T. (1999). Colored silicone injection for use in neurosurgical dissections: Anatomic technical note. Neurosurgery, 45, 12671271. discussion 1271–1264.Google Scholar
Santerre, J.P., Woodhouse, K., Laroche, G. & Labow, R.S. (2005). Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials, 26, 74577470.Google Scholar
Sedlmayr, J.C. & Witmer, L.M. (2002). Rapid technique for imaging the blood vascular system using stereoangiography. Anat Rec, 267, 330336.Google Scholar
Sen, T., Esmer, A.F., Acar, H.I., Karahan, S.T. & Tuccar, E. (2011). Arterial vascularisation of the anterior perforated substance. Singapore Med J, 52, 410414.Google Scholar
Shaari, C.M., Gannon, P.J., Salmeron, J., Sanders, I.R.A. & Urken, M.L. (1999). Tracheal transplantation: Defining the vascular territory of the canine cranial thyroid artery. Otolaryngol Head Neck Surg, 120, 180183.Google Scholar
Shimizu, S., Tanaka, R., Rhoton, A.L. Jr., Fukushima, Y., Osawa, S., Kawashima, M., Oka, H. & Fujii, K. (2006). Anatomic dissection and classic three-dimensional documentation: A unit of education for neurosurgical anatomy revisited. Neurosurgery, 58, E1000. discussion E1000.Google Scholar
Sivrev, D., Kayriakov, J., Trifonov, Z., Djelebov, D. & Atanasov, M. (1997). Combined plastination methods for Preparation of Improved ophthalmologic teaching models. J Int Soc Plastination 12, 1214.Google Scholar
Smith, R. & Rhoton, A.L. (1999). comment to: Sanan, A., Abdel Aziz, K. M., Janjua, R. M., van Loveren, H. R., Keller, J.T. Colored silicone injection for use in neurosurgical dissections: anatomic technical note. Neurosurgery, 45, 12721274.Google Scholar
Spalteholtz, W. (1914). Ueber das Durchsichtigmachen von menschlichen und tierischen praeparaten. Leipzig: Hirzel.Google Scholar
Stamatakis, G., Knuutinen, U., Laitinen, K. & Spyros, A. (2010). Analysis and aging of unsaturated polyester resins in contemporary art installations by NMR spectroscopy. Anal Bioanal Chem, 398, 32033214.Google Scholar
Tanaka, C., Ide, M. & Junior, A. (2006). Anatomical contribution to the surgical construction of the sartorius muscle flap. Surg Radiol Anat, 28, 277283.Google Scholar
Tanaka, Y. (1988). Synthesis and characterization of epoxides. In Epoxy Resins Chemistry and Technology, May, C.A. (Ed.), pp. 9284. New York: Marcel Dekker.Google Scholar
Tang, M., Yin, Z. & Morris, S.F. (2008). A pilot study on three-dimensional visualization of perforator flaps by using angiography in cadavers. Plast Reconstr Surg, 122, 429437.Google Scholar
Thiel, W. (1992a). Die Konservierung ganzer Leichen in natürlichen Farben. Ann Anat, 174, 185195.Google Scholar
Thiel, W. (1992b). Eine Arterienmasse zur Nachinjektion bei der Konservierung ganzer Leichen. Ann Anat, 174, 197200.Google Scholar
Tiedemann, K. & von Hagens, G. (1982). The technique of heart plastination. Anat Rec, 204, 295299.Google Scholar
Tilotta, F., Lazaroo, B., Laujac, M.H. & Gaudy, J.F. (2009). A study of the vascularization of the auricle by dissection and diaphanization. Surg Radiol Anat, 31, 259265.Google Scholar
Tompsett, D.H. (1970). Anatomical Techniques. Edinburgh: E. & S.Livingstone.Google Scholar
Twelves, D., Nerurkar, A., Osin, P., Ward, A., Isacke, C. & Gui, G.H. (2012). The anatomy of fluid-yielding ducts in breast cancer. Breast Cancer Res Treat, 132, 555564.Google Scholar
Vandeghinste, B., Trachet, B., Renard, M., Casteleyn, C., Staelens, S., Loeys, B., Segers, P. & Vandenberghe, S. (2011). Replacing vascular corrosion casting by in vivo micro-CT imaging for building 3D cardiovascular models in mice. Mol Imag Biol 13, 7886.Google Scholar
Verli, F.D., Rossi-Schneider, T.R., Schneider, F.L., Yurgel, L.S. & de Souza, M.A. (2007). Vascular corrosion casting technique steps. Scanning , 29, 128132.Google Scholar
von Hagens, G. (1979). Impregnation of soft biological specimens with thermosetting resins and elastomers. Anat Rec, 194, 247255.Google Scholar
Waldmann, A. (2006). Darstellung der topographischen Anatomie der Vordergliedmaße der Ringeltaube (Columba Palumbus Palumbus; Linnaeus, 1758). Giessen: VVB Laufersweiler-Verlag.Google Scholar
Walker, E.J., Shen, F., Young, W.L. & Su, H. (2011). Cerebrovascular casting of the adult mouse for 3D imaging and morphological analysis. J Vis Exp, 57, e2958.Google Scholar
Walter, T.J., Sparks, E.E. & Huppert, S.S. (2012). Three-dimensional resin casting and imaging of mouse portal vein or intrahepatic bile duct system. J Vis Exp, 68, e4272.Google Scholar
Weiglein, A.H. (1997). Plastination in the neurosciences. Keynote lecture. Acta Anat, 158, 69.Google Scholar
Westerweel, P.E., Rookmaaker, M.B., van Zonneveld, A.-J., Bleys, R.L.A.W., Rabelink, T.J. & Verhaar, M.C. (2005). A study of neovascularization in the rat ischemic hindlimb using Araldite casting and Spalteholtz tissue clearing. Cardiovasc Pathol, 14, 294297.Google Scholar
Wiltse, L.L. & Pait, T.G. (1998). Herophilus of Alexandria (325–255 BC.). The father of anatomy. Spine (Phila Pa 1976), 23, 19041914.Google Scholar
Wnuk, M., Hlushchuk, R., Janot, M., Tuffin, G., Martiny-Baron, G., Holzer, P., Imbach-Weese, P., Djonov, V. & Huynh-Do, U. (2012). Podocyte EphB4 signaling helps recovery from glomerular injury. Kidney Int, 81, 12121225.Google Scholar
Wnuk, M., Hlushchuk, R., Tuffin, G., Huynh-Do, U. & Djonov, V. (2011). The effects of PTK787/ZK222584, an inhibitor of VEGFR and PDGFRbeta pathways, on intussusceptive angiogenesis and glomerular recovery from Thy1.1 nephritis. Am J Pathol, 178, 18991912.Google Scholar
Worthen, D.M. & Wickham, M.G. (1972). Scanning electron microscopy tissue preparation. Invest Ophthalmol Vis Sci, 11, 133136.Google Scholar
Ye, X., Rozen, W.M., Alonso-Burgos, A. & Ashton, M.W. (2012). “Choke” vessels between vascular territories of the abdominal wall: Literature review and rare case of Leriche's syndrome. Clin Anat, 25, 9981004.Google Scholar
Zhao, J.G., Feng, G.S., Kong, X.Q., Li, X., Li, M.H. & Cheng, Y.S. (2004). Changes of tumor microcirculation after transcatheter arterial chemoembolization: First pass perfusion MR imaging and Chinese ink casting in a rabbit model. World J Gastroenterol, 10, 14151420.Google Scholar
Zhuang, Y.H., Zheng, H.P., Lin, S.Q. & Xu, D.C. (2011). Vasculature at the medial aspect of the foot and clinical application of flaps based on it for forefoot reconstruction. Plast Reconstr Surg, 127, 19671978.Google Scholar