Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T00:37:05.206Z Has data issue: false hasContentIssue false

Calibration of Atom Probe Tomography Reconstructions Through Correlation with Electron Micrographs

Published online by Cambridge University Press:  04 February 2019

Isabelle Mouton*
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Shyam Katnagallu
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Surendra Kumar Makineni
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Oana Cojocaru-Mirédin
Affiliation:
RWTH Aachen, I. Physikalisches Institut IA, Sommerfeldstraße 14, 52074 Aachen, Germany
Torsten Schwarz
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Leigh Thomas Stephenson
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Dierk Raabe
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
Baptiste Gault
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
*
*Author for correspondence: I. Mouton, E-mail: [email protected]
Get access

Abstract

Although atom probe tomography (APT) reconstructions do not directly influence the local elemental analysis, any structural inferences from APT volumes demand a reliable reconstruction of the point cloud. Accurate estimation of the reconstruction parameters is crucial to obtain reliable spatial scaling. In the current work, a new automated approach of calibrating atom probe reconstructions is developed using only one correlative projection electron microscopy (EM) image. We employed an algorithm that implements a 2D cross-correlation of microstructural features observed in both the APT reconstructions and the corresponding EM image. We apply this protocol to calibrate reconstructions in a Cu(In,Ga)Se2-based semiconductor and in a Co-based superalloy. This work enables us to couple chemical precision to structural information with relative ease.

Type
Reconstruction
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bas, P, Bostel, A, Deconihout, B & Blavette, D (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87, 298304.Google Scholar
Beinke, D, Oberdorfer, C & Schmitz, G (2016). Towards an accurate volume reconstruction in atom probe tomography. Ultramicroscopy 165, 3441.Google Scholar
Cojocaru-Mirédin, O, Schwarz, T & Abou-Ras, D (2018). Assessment of elemental distributions at line and planar defects in Cu(In,Ga)Se2 thin films by atom probe tomography. Scr Mater 148, 106114.Google Scholar
De Geuser, F, Lefebvre, W, Danoix, F, Vurpillot, F, Forbord, B & Blavette, D (2007). An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf Interface Anal 39, 268272.Google Scholar
Devaraj, A, Colby, R, Vurpillot, F & Thevuthasan, S (2014). Understanding atom probe tomography of oxide-supported metal nanoparticles by correlation with atomic-resolution electron microscopy and field evaporation simulation. J Phys Chem Lett 5, 13611367.Google Scholar
Ding, L, Goshtasby, A & Satter, M (2001). Volume image registration by template matching. Image Vis Comput 19, 821832.Google Scholar
Felfer, P & Cairney, J (2016). A computational geometry framework for the optimisation of atom probe reconstructions. Ultramicroscopy 169, 6268.Google Scholar
Gault, B, Geuser, Fd, Moody, MP, Muddle, BC & Ringer, SP (2008). Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal 14, 296305.Google Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2007). Atom Probe Microscopy. Springer http://www.springer.com/la/book/9781461434351 (Accessed December 6, 2016).Google Scholar
Gault, B, Moody, MP, de Geuser, F, Tsafnat, G, La Fontaine, A, Stephenson, LT, Haley, D & Ringer, SP (2009). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105, 034913.Google Scholar
Gorman, B, Diercks, D, Kaufman, M, Ulfig, R, Lawrence, D, Thompson, K & Larson, D (2006). Atomic scale compositional and structural characterization of nanostructured materials using combined FIB, STEM, and LEAP. Microsc Microanal 12, 17201721.Google Scholar
Gorman, BP, Diercks, D, Salmon, N, Stach, E, Amador, G & Hartfield, C (2008). Hardware and techniques for cross- correlative TEM and atom probe analysis. Micros Today 16, 4247.Google Scholar
Guo, W, Sneed, BT, Zhou, L, Tang, W, Kramer, MJ, Cullen, DA & Poplawsky, JD (2016). Correlative energy-dispersive X-Ray spectroscopic tomography and atom probe tomography of the phase separation in an alnico 8 alloy†. Microsc Microanal 22, 12511260.Google Scholar
Haley, D, Petersen, T, Ringer, SP & Smith, Gdw (2011). Atom probe trajectory mapping using experimental tip shape measurements. J Microsc 244, 170180.Google Scholar
Herbig, M (2018). Spatially correlated electron microscopy and atom probe tomography: Current possibilities and future perspectives. Scr Mater 148, 98105.Google Scholar
Jeske, T & Schmitz, G (2001). Nanoscale analysis of the early interreaction stages in Al/Ni. Scr Mater 45, 555560.Google Scholar
Kelly, TF & Miller, MK (2007). Atom probe tomography. Rev Sci Instrum 78, 031101.Google Scholar
Lefebvre, W, Hernandez-Maldonado, D, Moyon, F, Cuvilly, F, Vaudolon, C, Shinde, D & Vurpillot, F (2015). HAADF–STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy. Ultramicroscopy 159(Part 2), 403412.Google Scholar
Makineni, SK, Lenz, M, Kontis, P, Li, Z, Kumar, A, Felfer, PJ, Neumeier, S, Herbig, M, Spiecker, E, Raabe, D & Gault, B (2018). Correlative microscopy—novel methods and their applications to explore 3D chemistry and structure of nanoscale lattice defects: A case study in superalloys. JOM 70(9), 17361743.Google Scholar
Makineni, SK, Nithin, B & Chattopadhyay, K (2015a). Synthesis of a new tungsten-free γ–γ′ cobalt-based superalloy by tuning alloying additions. Acta Mater 85, 8594.Google Scholar
Makineni, SK, Nithin, B & Chattopadhyay, K (2015b). A new tungsten-free γ–γ’ Co–Al–Mo–Nb-based superalloy. Scr Mater 98, 3639.Google Scholar
Mouton, I, Printemps, T, Grenier, A, Gambacorti, N, Pinna, E, Tiddia, M, Vacca, A & Mula, G (2017). Toward an accurate quantification in atom probe tomography reconstruction by correlative electron tomography approach on nanoporous materials. Ultramicroscopy 182, 112117.Google Scholar
Petersen, TC & Ringer, SP (2009). Electron tomography using a geometric surface-tangent algorithm: Application to atom probe specimen morphology. J Appl Phys 105, 103518.Google Scholar
Rigutti, L, Blum, I, Shinde, D, Hernández-Maldonado, D, Lefebvre, W, Houard, J, Vurpillot, F, Vella, A, Tchernycheva, M, Durand, C, Eymery, J & Deconihout, B (2014). Correlation of microphotoluminescence spectroscopy, scanning transmission electron microscopy, and atom probe tomography on a single nano-object containing an InGaN/GaN multiquantum well system. Nano Lett 14, 107114.Google Scholar
Sarvaiya, JN, Patnaik, S & Bombaywala, S (2009). Image Registration by Template Matching Using Normalized Cross-Correlation. In 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies, pp. 819–822.Google Scholar
Schwarz, T, Stechmann, G, Gault, B, Cojocaru-Mirédin, O, Wuerz, R & Raabe, D (2008). Correlative transmission Kikuchi diffraction and atom probe tomography study of Cu(In,Ga)Se2 grain boundaries. Prog Photovoltaics Res Appl 26, 196204.Google Scholar
Sklansky, J (1978). Image segmentation and feature extraction. IEEE Transactions on Systems, Man, and Cybernetics 8, 237247.Google Scholar
Stoffers, A, Barthel, J, Liebscher, CH, Gault, B, Cojocaru-Mirédin, O, Scheu, C & Raabe, D (2017). Correlating atom probe tomography with atomic-resolved scanning transmission electron microscopy: Example of segregation at silicon grain boundaries. Microsc Microanal 23, 291299.Google Scholar
Sun, Z, Hazut, O, Huang, B-C, Chiu, Y-P, Chang, C-S, Yerushalmi, R, Lauhon, LJ & Seidman, DN (2016). Dopant diffusion and activation in silicon nanowires fabricated by ex situ doping: A correlative study via atom-probe tomography and scanning tunneling spectroscopy. Nano Lett 16, 44904500.Google Scholar
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF & Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.Google Scholar
Vurpillot, F, Gault, B, Geiser, BP & Larson, DJ (2013). Reconstructing atom probe data: A review. Ultramicroscopy 132, 1930.Google Scholar
Vurpillot, F, Gruber, M, Da Costa, G, Martin, I, Renaud, L & Bostel, A (2011). Pragmatic reconstruction methods in atom probe tomography. Ultramicroscopy 111, 12861294.Google Scholar