No CrossRef data available.
Published online by Cambridge University Press: 02 July 2020
A variety of biological labeling techniques has been developed in order to obtain specific chemical and spatial information from cells and tissues. Traditionally theses labeling techniques have been categorized as cytochemistry, immunocytochemistry, and in situ hybridization. Another special category relates to fluorescence analog cytochemistry in which specific fluorescently-labeled molecules become incorporated into the pool of endogenous molecules of the cell. They can thus serve as reporters for analysis of the dynamic properties of the population of molecules of interest. Such molecules are usually introduced into cells by microinjection or expressed within the cell (e.g., green fluorescent protein derivatives).
The past few years have witnessed a renaissance in biological optical microscopy. Many of the advances in the elucidation of cell structure-function relationships made through the use of optical microscopy have relied upon fluorescence labeling technology. These advances notwithstanding there remain experimental situations in cell biology that require the higher spatial resolution afforded by electron microscopy. Combining fluorescence and electron microscopy to study the same structures would be very useful in many experimental situations in cell biology. Such an examination of the same structures with more than one imaging modality can be referred to as correlative or integrated microscopy. The number of such studies is relatively small; this is probably due to technical difficulties encountered by various investigators.