No CrossRef data available.
Published online by Cambridge University Press: 02 July 2020
Radiation-induced segregation (RIS) is the spatial redistribution of elements at defect sinks such as grain boundaries and free surfaces during irradiation. This phenomenon has been studied in a wide variety of alloys and has been linked to irradiation-assisted stress corrosion cracking (IASCC) of nuclear reactor core components. Therefore, accurate determination of the grain boundary composition is important in understanding its effects on environmental cracking. Radiation-induced segregation profiles are routinely measured by scanning-transmission electron microscopy using energy-dispersive X-ray spectroscopy (STEM-EDS) and Auger electron spectroscopy (AES). Because of the narrow width of the segregation profile (typically less than 10 nm full width at half-maximum), the accuracy of grain boundary concentration measurements using STEM/EDS depends on the characteristics of the analyzing instrument, specifically, the excited volume in which x-rays are generated. This excited volume is determined by both electron beam diameter and the primary electron beam energy. Increasing the primary beam energy in STEM/EDS produces greater measured grain boundary segregation, as the reduced electron beam broadening a smaller excited volume.