Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T22:25:15.910Z Has data issue: false hasContentIssue false

Bacterial and Mineral Elements in an Arctic Biofilm: A Correlative Study Using Fluorescence and Electron Microscopy

Published online by Cambridge University Press:  26 January 2010

Samuel Clarke
Affiliation:
Department of Biomedical Engineering, McGill University, Montréal, QC H3A 2B4, Canada
Randall E. Mielke
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
Andrea Neal
Affiliation:
Donald Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106-5131, USA
Patricia Holden
Affiliation:
Donald Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106-5131, USA
Jay L. Nadeau*
Affiliation:
Department of Biomedical Engineering, McGill University, Montréal, QC H3A 2B4, Canada
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Few simple labeling methods exist for simultaneous fluorescence and electron microscopy of bacteria and biofilms. Here we describe the synthesis, characterization, and application of fluorescent nanoparticle quantum dot (QD) conjugates to target microbial species, including difficult to label Gram-negative strains. These QD conjugates impart contrast for both environmental scanning electron microscopy (ESEM) and fluorescence microscopy, permitting observation of living and fixed bacteria and biofilms. We apply these probes for studying biofilms extracted from perennial cold springs in the Canadian High Arctic, which is a particularly challenging system. In these biofilms, sulfur-metabolizing bacteria live in close association with unusual sulfur mineral formations. Following simple labeling protocols with the QD conjugates, we are able to image these organisms in fully-hydrated samples and visualize their relationship to the sulfur minerals using both ESEM and fluorescence microscopy. We then use scanning transmission electron microscopy to observe precipitated sulfur around individual cells and within the biofilm lattice. All combined, this information sheds light on the possible mechanisms of biofilm and mineral structure formation. These new QD conjugates and techniques are highly transferable to many other microbiological applications, especially those involving Gram-negative bacteria, and can be used for correlated fluorescence and electron microscopy.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asokan, S., Krueger, K.M., Alkhawaldeh, A., Carreon, A.R., Mu, Z.Z., Colvin, V.L., Mantzaris, N.V. & Wong, M.S. (2005). The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods. Nanotechnology 16(10), 20002011.CrossRefGoogle ScholarPubMed
Decho, A.W. & Kawaguchi, T. (1999). Confocal imaging of in situ natural microbial communities and their extracellular polymeric secretions using Nanoplast resin. Biotechniques 27(6), 12461252.Google ScholarPubMed
Douglas, S. & Douglas, D.D. (2000). Environmental scanning electron microscopy studies of colloidal sulfur deposition in a natural microbial community from a cold sulfide spring near Ancaster, Ontario, Canada. Geomicrobiology J 17(4), 275289.Google Scholar
Dumas, E., Gao, C., Suffern, D., Bradforth, S., Dimitrijevic, N. & Nadeau, J. (2010). Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria. Environ Sci Technol; doi:10.1021/es902898d.CrossRefGoogle ScholarPubMed
Faude, U.C. & Hofle, M.G. (1997). Development and application of monoclonal antibodies for in situ detection of indigenous bacterial strains in aquatic ecosystems. Appl Environ Microbiol 63(11), 45344542.CrossRefGoogle ScholarPubMed
Giepmans, B.N., Deerinck, T.J., Smarr, B.L., Jones, Y.Z. & Ellisman, M.H. (2005). Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nat Methods 2(10), 743749.Google Scholar
Howarth, M., Takao, K., Hayashi, Y. & Ting, A.Y. (2005). Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci USA 102(21), 75837588.CrossRefGoogle ScholarPubMed
Lawrence, J.R., Korber, D.R., Hoyle, B.D., Costerton, J.W. & Caldwell, D.E. (1991). Optical sectioning of microbial biofilms. J Bacteriol 173(20), 65586567.CrossRefGoogle ScholarPubMed
Lies, D.P., Hernandez, M.E., Kappler, A., Mielke, R.E., Gralnick, J.A. & Newman, D.K. (2005). Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for Biofilms. Appl Environ Microbiol 71(8), 44144426.CrossRefGoogle Scholar
Lis, H. & Sharon, N. (1998). Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98(2), 637674.CrossRefGoogle ScholarPubMed
Mattoussi, H., Mauro, J.M., Goldman, E.R., Anderson, G.P., Sundar, V.C., Mikulec, F.V. & Bawendi, M.G. (2000). Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122(49), 1214212150.CrossRefGoogle Scholar
Medintz, I.L., Uyeda, H.T., Goldman, E.R. & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6), 435446.CrossRefGoogle ScholarPubMed
Nadeau, J.L., Perreault, N.N., Niederberger, T.D., Whyte, L.G., Sun, H.J. & Leon, R. (2008). Fluorescence microscopy as a tool for in situ life detection. Astrobiology 8(4), 859874.CrossRefGoogle ScholarPubMed
Nellist, P.D. (2007). Scanning transmission electron microscopy. In Science of Microscopy, Hawkes, P.W. & Spence, J.C.H. (Eds.), pp. 65132. New York: Springer.CrossRefGoogle Scholar
Niederberger, T.D., Perreault, N.N., Lawrence, J.R., Nadeau, J.L., Mielke, R.E., Greer, C.W., Andersen, D.T. & Whyte, L.G. (2009). Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian high arctic. Environ Microbiol 11(3), 616629.CrossRefGoogle ScholarPubMed
Nisman, R., Dellaire, G., Ren, Y., Li, R. & Bazett-Jones, D.P. (2004). Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J Histochem Cytochem 52(1), 1318.Google Scholar
Ofek, I., Courtney, H.S., Schifferli, D.M. & Beachey, E.H. (1986). Enzyme-linked immunosorbent assay for adherence of bacteria to animal cells. J Clin Microbiol 24(4), 512516.CrossRefGoogle ScholarPubMed
Omelon, C.R., Pollard, W.H. & Andersen, D.T. (2006). A geochemical evaluation of perennial spring activity and associated mineral precipitates at Expedition Fjord, Axel Heiberg Island, Canadian High Arctic. Appl Geochem 21(1), 115.CrossRefGoogle Scholar
Perreault, N.N., Andersen, D.T., Pollard, W.H., Greer, C.W. & Whyte, L.G. (2007). Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high arctic. Appl Environ Microbiol 73(5), 15321543.Google Scholar
Pong, B.K., Trout, B.L. & Lee, J.Y. (2008). Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantum dots in water: A procedure guided by computational studies. Langmuir 24(10), 52705276.Google Scholar
Priester, J.H., Horst, A.M., Van de Werfhorst, L.C., Saleta, J.L., Mertes, L.A. & Holden, P.A. (2007). Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. J Microbiol Methods 68(3), 577587.Google Scholar
Priester, J.H., Stoimenov, P.K., Mielke, R.E., Webb, S.M., Ehrhardt, C., Zhang, J.P., Stucky, G.D. & Holden, P.A. (2009). Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa. Environ Sci Technol 43(7), 25892594.CrossRefGoogle ScholarPubMed
Rogers, J.D., Perreault, N.N., Niederberger, T.D., Lichten, C., Whyte, L.G. & Nadeau, J.L. (2009). A life detection problem in a High Arctic microbial community. Planet Space Sci; doi:10.1016/j.pss.2009.06.014.Google Scholar
Sui, G., Orbulescu, J., Ji, X., Gattás-Asfura, K.M., Leblanc, R.M. & Micic, M. (2003). Surface chemistry studies of quantum dots (QDs) modified with surfactants. J Cluster Sci 14(2), 123133.CrossRefGoogle Scholar
Tsubery, H., Ofek, I., Cohen, S. & Fridkin, M. (2000). The functional association of polymyxin B with bacterial lipopolysaccharide is stereospecific: Studies on polymyxin B nonapeptide. Biochemistry 39(39), 1183711844.Google Scholar
Walker, J.T., Verran, J., Boyd, R.D. & Percival, S. (2001). Microscopy methods to investigate structure of potable water biofilms. Methods Enzymol 337, 243255.Google Scholar
Wilkinson, D.G. (1999). In Situ Hybridization: A Practical Approach. New York: Oxford University Press.Google Scholar