Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T22:25:40.142Z Has data issue: false hasContentIssue false

Atom-Probe Tomographic Analyses of Hydrogen Interstitial Atoms in Ultrahigh Purity Niobium

Published online by Cambridge University Press:  21 April 2015

Yoon-Jun Kim
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL 60208, USA
David N. Seidman*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL 60208, USA Northwestern University Center for Atom-Probe Tomography (NUCAPT), 2220 Campus Dr., Evanston, IL 60208, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Atomic-scale characterization of hydrogen and formation of niobium hydrides, using ultraviolet (wavelength=355 nm) picosecond laser-assisted local-electrode atom-probe tomography, was performed for ultrahigh purity niobium utilizing different laser pulse energies, 10 or 50 pJ/pulse or voltage pulsing. At 50 pJ/pulse, hydrogen atoms migrate onto the 110 and 111 poles as a result of stimulated surface diffusion, whereas they are immobile for <10 pJ/pulse or for voltage pulsing. Accordingly, the highest concentrations of H and NbH were obtained at 50 pJ/pulse. This is attributed to the thermal energy of the laser pulses being transferred to pure niobium specimens. Therefore, we examined the effects of the laser pulse energy being increased systematically from 1 to 20 pJ/pulse and then decreasing it from 20 to 1 pJ/pulse. The concentrations of H, H2, and NbH and the atomic concentration ratios H2/H, NbH/Nb, and Nb3+/Nb2+ were calculated with respect to the systematically changing laser pulse energies. The atomic concentration ratios H2/H and NbH/Nb are greater when decreasing the laser pulse energy than when increasing it, because the higher residual thermal energy after decreasing the laser pulse energy increases the mobility of H atoms by supplying sufficient thermal energy to form H2 or NbH.

Type
Materials Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaiwa, N. & Wada, M. (1990). A stress-induced hydride phase in niobium observed with a field-ion microscope. J Less-Common Met 160(2), 283294.CrossRefGoogle Scholar
Ast, D.G. & Seidman, D.N. (1968). Field ion microscopy of gold. Appl Phys Lett 13(10), 348.CrossRefGoogle Scholar
Ast, D.G. & Seidman, D.N. (1971). Noble gas imaging of gold in field ion microscope. Surf Sci 28(1), 1931.CrossRefGoogle Scholar
Averback, R.S. & Seidman, D.N. (1973). Neon gas imaging of gold in field-ion microscope. Surf Sci 40(2), 249263.CrossRefGoogle Scholar
Baker, C. & Birnbaum, H.K. (1972). Hydrogen-dislocation interaction in niobium. Scripta Metall 6(9), 851854.CrossRefGoogle Scholar
Baker, C. & Birnbaum, H.K. (1973). Anelastic studies of hydrogen diffusion in niobium. Acta Metall Mater 21(7), 865872.CrossRefGoogle Scholar
Birnbaum, H.K., Grossbeck, M.L. & Amano, M. (1976). Hydride precipitation in Nb and some properties of NbH. J Less-Common Met 49(1–2), 357370.CrossRefGoogle Scholar
Brandon, D.G. (1962). Image formation in field ion microscope. Philos Mag 7(78), 10031011.CrossRefGoogle Scholar
Brandon, D.G. (1963). Resolution of atomic structure—recent advances in theory and development of field ion microscope. Br J Appl Phys 14(8), 474484.CrossRefGoogle Scholar
Brandon, D.G. (1964). Accurate determination of crystal orientation from field ion micrographs. J Sci Instrum 41(6), 373375.CrossRefGoogle Scholar
Brandon, D.G. (1965). Analysis of field evaporation data from field ion microscope experiments. Br J Appl Phys 16(5), 683688.CrossRefGoogle Scholar
Brandon, D.G. (1968). Gas impact, field etching and field deformation. In Field-Ion Microscopy, Hren, J.J. & Ranganathan, S. (Eds.), pp. 5368. New York, NY: Plenum Press.CrossRefGoogle Scholar
Champion, M.S., Cooley, L.D., Ginsburg, C.M., Sergatskov, D.A., Geng, R.L., Hayano, H., Iwashita, Y. & Tajima, Y. (2009). Quench-limited SRF cavities: Failure at the heat-affected zone. IEEE Trans Appl Supercond 19(3), 13841386.CrossRefGoogle Scholar
Ciovati, G., Myneni, G., Stevie, F., Maheshwari, P. & Griffis, D. (2010). High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments. Phys Rev ST Accel Beams 13(2), 022002.CrossRefGoogle Scholar
Cooley, L.D., Burk, D., Cooper, C., Dhanaraj, N., Foley, M., Ford, D., Gould, K., Hicks, D., Novitski, R., Romanenko, A., Schuessler, R., Thompson, C. & Wu, G. (2011). Impact of forming, welding, and electropolishing on pitting and the surface finish of SRF cavity niobium. IEEE Trans Appl Supercond 21(3), 26092614.CrossRefGoogle Scholar
Delheusy, M., Stierle, A., Kasper, N., Kurta, R.P., Vlad, A., Dosch, H., Antoine, C., Resta, A., Lundgren, E. & Andersen, J. (2008). X-ray investigation of subsurface interstitial oxygen at Nb/oxide interfaces. Appl Phys Lett 92(10), 101911.CrossRefGoogle Scholar
Drechsler, M. & Wolf, P. (1960). Zur Analyse von Feldionenmikroskop-Aufnahmen mit atomarer Auflosung. In 4th International Conference on Electron Microscopy, Bargmann, W., Mollenstedt, G., Niehrs, H., Peters, D., Ruska, E. & Wolpers, C. (Eds.), pp. 835847. Berlin, Germany: Springer-Verlag.Google Scholar
Gabriel, S.B., Silva, G., Candioto, K.C.G., Santos, I.D., Suzuki, P.A. & Nunes, C.A. (2011). Niobium hydrogenation process effect of temperature and cooling rate from the hydrogenation temperature. Int J Refract Met H 29(1), 134137.CrossRefGoogle Scholar
Gault, B., La Fontaine, A., Moody, M.P., Ringer, S.P. & Marquis, E.A. (2010). Impact of laser pulsing on the reconstruction in an atom probe tomography. Ultramicroscopy 110(9), 12151222.CrossRefGoogle Scholar
Gault, B., Moody, M.P., de Geuser, F., Tsafnat, G., La Fontaine, A., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105(3), 034913.CrossRefGoogle Scholar
Gaussmann, A., Drachsel, W. & Block, J.H. (1992). Kinetics of field evaporation during hydride formation on gap surfaces—a FIM and atom-probe study. Langmuir 8(1), 125129.CrossRefGoogle Scholar
Ge, M., Wu, G., Burk, D., Ozelis, J., Harms, E., Sergatskov, D., Hicks, D. & Cooley, L.D. (2011). Routine characterization of 3D profiles of SRF cavity defects using replica techniques. Supercond Sci Technol 24(3), 035002.CrossRefGoogle Scholar
Gomer, R. (1961). Field Emission and Field Ionization. Cambridge: Harvard University Press.Google Scholar
Grossbeck, M.L. & Birnbaum, H.K. (1977). Low-temperature hydrogen embrittlement of niobium. 2. Microscopic observations. Acta Metall Mater 25(2), 135147.CrossRefGoogle Scholar
Kellogg, G.L. (1981). Pulsed laser stimulated field desorption of hydrogen from molybdenum. J Chem Phys 74(2), 14791487.CrossRefGoogle Scholar
Kellogg, G.L. (1983). Field evaporation of silicon and field desorption of hydrogen from silicon surfaces. Phys Rev B 28(4), 19571964.CrossRefGoogle Scholar
Kim, Y.-J., Tao, R., Klie, R.F. & Seidman, D.N. (2013). Direct atomic-scale imaging of hydrogen and oxygen interstitials in pure niobium using atom-probe tomography and aberration-corrected scanning transmission electron microscopy. ACS Nano 7(1), 732739.CrossRefGoogle ScholarPubMed
Ma, Q. & Rosenberg, R.A. (2003). Angle-resolved X-ray photoelectron spectroscopy study of the oxides on Nb surfaces for superconducting r.f. cavity applications. Appl Surf Sci 206(1–4), 209217.CrossRefGoogle Scholar
Maheshwari, P., Tian, H., Reece, C.E., Kelley, M.J., Myneni, G.R., Stevie, F.A., Rigsbee, J.M., Batchelor, A.D. & Griffis, D.P. (2011). Surface analysis of Nb materials for SRF cavities. Surf Interface Anal 43(1–2), 151153.CrossRefGoogle Scholar
Makenas, B.J. & Birnbaum, H.K. (1982). Phase-changes in the niobium hydrogen system 2. Low-temperature hydride phase-transitions. Acta Metall Mater 30(2), 469481.CrossRefGoogle Scholar
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13(6), 428436.CrossRefGoogle ScholarPubMed
Moore, A.J.W. & Spink, J.A. (1974). Influence of surface coordination on field evaporation processes in tungsten. Surf Sci 44(1), 198212.CrossRefGoogle Scholar
Olney, T.N., Cann, N.M., Cooper, G. & Brion, C.E. (1997). Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum rules. Chem Phys 223(1), 5998.CrossRefGoogle Scholar
Padamsee, H. (2009). RF Superconductivity: Science, Technology, and Applications. Weinheim: Wiley-VCH.CrossRefGoogle Scholar
Panofsky, W.K.H. & Phillips, M. (2005). Classical Electricity and Magnetism. Mineola, NY: Dover Publications.Google Scholar
Phinney, N., Toge, N. & Walker, N. (2007). International Linear Collider Reference Design Report. Vol III-Accelerator. http://www.linearcollider.org/ILC/Publications/Reference-Design-ReportGoogle Scholar
Ricker, R.E. & Myneni, G.R. (2010). Evaluation of the propensity of niobium to absorb hydrogen during fabrication of superconducting radio frequency cavities for particle accelerators. J Res Natl Inst Stan 115(5), 353371.CrossRefGoogle ScholarPubMed
Romanenko, A. & Goncharova, L.V. (2011). Elastic recoil detection studies of near-surface hydrogen in cavity-grade niobium. Supercond Sci Technol 24(10), 105017.CrossRefGoogle Scholar
Romanenko, A. & Padamsee, H. (2010). The role of near-surface dislocations in the high magnetic field performance of superconducting niobium cavities. Supercond Sci Technol 23(4), 045008.CrossRefGoogle Scholar
Sakata, T. & Block, J.H. (1982). Field evaporation of silicon-(III) surfaces in the presence of hydrogen. Surf Sci 116(1), L183L189.CrossRefGoogle Scholar
Schober, T. (1975 a). Niobium-hydrogen system-electron-microscope study 1. Room-temperature results. Phys Status Solidi A 29(2), 395406.CrossRefGoogle Scholar
Schober, T. (1975 b). Niobium-hydrogen system—Electron-microscope study 2. Low-temperature structures. Phys Status Solidi A 30(1), 107116.CrossRefGoogle Scholar
Schober, T., Linke, U. & Wenzl, H. (1974). Metallography of niobium hydrogen system. Scripta Metall 8(7), 805812.CrossRefGoogle Scholar
Schober, T., Pick, M.A. & Wenzl, H. (1973). Electron-microscopy of beta-hydride in niobium. Phys Status Solidi A 18(1), 175182.CrossRefGoogle Scholar
Schober, T. & Wenzl, H. (1976). Beta-phase melting and solidification phenomena in niobium-hydrogen system. Phys Status Solidi A 33(2), 673681.CrossRefGoogle Scholar
Sebastian, J.T., Seidman, D.N., Yoon, K.E., Bauer, P., Reid, T., Boffo, C. & Norem, J. (2006). Atom-probe tomography analyses of niobium superconducting RF cavity materials. Physica C 441(1–2), 7074.CrossRefGoogle Scholar
Seidman, D.N. (2007 a). Perspective: From field-ion microscopy of single atoms to atom-probe tomography: A journey: “Atom-probe tomography” [Rev. Sci. Instrum. 78, 031101, (2007)]. Rev Sci Instrum 78(3), 030901.CrossRefGoogle ScholarPubMed
Seidman, D.N. (2007 b). Three-dimensional atom-probe tomography: Advances and applications. Annu Rev Mater Res 37, 127158.CrossRefGoogle Scholar
Seidman, D.N. & Stiller, K. (2009). An atom-probe tomography primer. MRS Bull 34(10), 717724.CrossRefGoogle Scholar
Simmons, G. & Wang, H. (1971). Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook. Cambridge, MA: MIT Press.Google Scholar
Singer, W., Singer, X., Aderhold, S., Ermakov, A., Twarowski, K., Crooks, R., Hoss, M., Scholz, F. & Spaniol, B. (2011). Surface investigation on prototype cavities for the European X-ray free electron laser. Phys Rev ST Accel Beams 14(5), 050702.CrossRefGoogle Scholar
Southon, M.J. (1968). Field emission and field ionization. In Field-Ion Microscopy, Hren, J.J. & Ranganathan, S. (Eds.), pp. 627. New York, NY: Plenum Press.CrossRefGoogle Scholar
Tsong, T.T. (1978). Field ion image formation. Surf Sci 70(1), 211233.CrossRefGoogle Scholar
Tsong, T.T. (1990). Atom-Probe Field Ion Microscopy: Field Ion Emission and Surfaces and Interfaces at Atomic Resolution. Cambridge and New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Waugh, A.R., Boyes, E.D. & Southon, M.J. (1976). Investigations of field evaporation with a field-desorption microscope. Surf Sci 61(1), 109142.CrossRefGoogle Scholar
Yoon, K.E., Seidman, D.N., Antoine, C. & Bauer, P. (2008). Atomic-scale chemical analyses of niobium oxide/niobium interfaces via atom-probe tomography. Appl Phys Lett 93(13), 132502.CrossRefGoogle Scholar
Yoon, K.E., Seidman, D.N., Bauer, P., Boffo, C. & Antoine, C. (2007). Atomic-scale chemical-analyses of niobium for superconducting radio-frequency cavities. IEEE Trans Appl Supercond 17(2), 13141317.CrossRefGoogle Scholar