Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T11:23:53.113Z Has data issue: false hasContentIssue false

Atomic-Scale Tomography: A 2020 Vision

Published online by Cambridge University Press:  13 May 2013

Thomas F. Kelly*
Affiliation:
Cameca Instruments Inc., 5500 Nobel Drive, Suite 100, Madison, WI 53711, USA
Michael K. Miller
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Krishna Rajan
Affiliation:
Department of Materials Science and Engineering, Institute for Combinatorial Discovery, Iowa State University, 2220 Hoover Hall, Ames, IA 50011, USA
Simon P. Ringer
Affiliation:
School of Aerospace, Mechanical and Mechatronic Engineering, Australian Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia
*
*Corresponding author. E-mail: [email protected] Editor's note: A short version of this article was published inMicroscopy Today, March 2012
Get access

Abstract

Atomic-scale tomography (AST) is defined and its place in microscopy is considered. Arguments are made that AST, as defined, would be the ultimate microscopy. The available pathways for achieving AST are examined and we conclude that atom probe tomography (APT) may be a viable basis for AST on its own and that APT in conjunction with transmission electron microscopy is a likely path as well. Some possible configurations of instrumentation for achieving AST are described. The concept of metaimages is introduced where data from multiple techniques are melded to create synergies in a multidimensional data structure. When coupled with integrated computational materials engineering, structure–properties microscopy is envisioned. The implications of AST for science and technology are explored.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Billinge, S., Rajan, K. & Sinnott, S. (2006). From Cyberinfrastructure to Cyberdiscovery in Materials Science. Arlington, VA: U.S. National Science Foundation.Google Scholar
Boll, T., Al-Kassab, T., Yuan, Y. & Liu, Z.G. (2007). Investigation of the site occupation of atoms in pure and doped TiAl/Ti3Al intermetallic. Ultramicroscopy 107(9), 796801.Google Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418427.Google Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R., Larson, D.J. & Kelly, T.F. (2010). Optimized laser thermal pulsing of atom probe tomography: LEAP 4000X. Microsc Microanal 16(Suppl 2), 1011.Google Scholar
Camus, P.P., Larson, D.J. & Kelly, T.F. (1995). A method for reconstructing and locating atoms on the crystal lattice in three-dimensional atom probe data. Appl Surf Sci 87/88, 305310.CrossRefGoogle Scholar
Dahmen, U., Erni, R., Radmilovic, V., Kisielowski, C., Rossell, M.D. & Denes, P. (2009). Background, status and future of the transmission electron aberration-corrected microscope project. Philos Trans Roy Soc A 367, 37953808.CrossRefGoogle ScholarPubMed
Deconihout, B., Gerard, P., Bouet, M. & Bostel, A. (1996). Improvement of the detection efficiency of channel plate electron multiplier for atom probe application. Appl Surf Sci 94/95, 422427.Google Scholar
Einspahr, J.J. & Voyles, P.M. (2006). Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy 106(11-12), 10411052.CrossRefGoogle ScholarPubMed
Falcone, R., Tirrell, M., Adesida, I., Bonnell, D., Broholm, C., Crabtree, G., Gibson, M., Hawker, C., Idzerda, Y., Jeelani, S., Murray, C., Phillips, J., Sinclair, R. & Spence, J. (2012). Developing a Vision for the Infrastructure and Facility Needs of the Materials Community: Report of NSF Materials 2022 (A Subcommittee of the Mathematical and Physical Sciences Advisory Committee). Arlington, VA: U.S. National Science Foundation.Google Scholar
Gault, B., Haley, D., De Geuser, F., Moody, M.P., Marquis, E.A., Larson, D.J. & Geiser, B.P. (2011). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111, 448457.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012a). Atom probe crystallography. Mater Today 15(9), 378386.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012b). Atom Probe Microscopy. New York: Springer.CrossRefGoogle Scholar
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 043701043708.Google Scholar
Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal 13, 437447.Google Scholar
Geiser, B.P., Larson, D.J., Gerstl, S.S.A., Reinhard, D.A., Kelly, T.F., Prosa, T.J. & Olson, J.D. (2009). A system for simulation of tip evolution under field evaporation. Micros Microanal 15(Suppl 2), 302303.CrossRefGoogle Scholar
Gordon, L.M. & Joester, D. (2011). Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth. Nature 469, 194198.Google Scholar
Haley, D., Moody, M.P. & Smith, G.D.W. (2013). Level set methods for modelling evaporation in atom probe. Microsc Microanal, submitted.CrossRefGoogle Scholar
Haley, D., Petersen, T., Ringer, S.P. & Smith, G.D.W. (2011). Atom probe trajectory mapping using experimental tip shape measurements. J Microsc 244(2), 170180.Google Scholar
Herman, G.T. & Kuba, A. (1999). Discrete Tomography: Foundations, Algorithms, and Applications. Boston, MA: Birkhäuser.CrossRefGoogle Scholar
Herman, G.T. & Kuba, A. (2007). Advances in Discrete Tomography and Its Applications. Boston, MA: Birkhäuser.Google Scholar
Hoppe, W. (1969a). Diffraction in inhomogeneous primary wave fields. 1. Principle of phase determination from electron diffraction interference. Acta Crystallogr A 25, 495501.Google Scholar
Hoppe, W. (1969b). Diffraction in inhomogeneous primary wave fields. 2. Optical experiments for phase determination of lattice interferences. Acta Crystallogr A 25, 502507.CrossRefGoogle Scholar
Hoppe, W. (1969c). Diffraction in inhomogeneous primary wave fields. 3. Amplitude and phase determination for nonperiodic objects. Acta Crystallogr A 25, 508515.CrossRefGoogle Scholar
Humphry, M.J., Kraus, B., Hurst, A.C., Maiden, A.M. & Rodenburg, J.M. (2012). Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat Commun 3, 730.Google Scholar
Irwin, K.D. (2006). Seeing with superconductors. Sci Am 295, 8692.CrossRefGoogle ScholarPubMed
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51(2), 11841194.Google Scholar
Kelly, T.F. (2011). Kinetic-energy discrimination for atom probe tomography. Micros Microanal 17, 114.Google Scholar
Kelly, T.F., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D., Strennen, E.M., Oltman, E., Bunton, J.H. & Strait, D.R. (2004). First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10, 373383.CrossRefGoogle ScholarPubMed
Kelly, T.F. & Larson, D.J. (2012). The second revolution in atom probe tomography. MRS Bull 37, 150158.Google Scholar
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 031101031120.Google Scholar
Kelly, T.F., Miller, M.K., Rajan, K., Ringer, S.P., Borisevich, A.Y., Dellby, N. & Krivanek, O.L. (2011). Toward atomic-scale tomography: The ATOM project. Microsc Microanal 17(Suppl 2), 708709.Google Scholar
Kelly, T.F., Nishikawa, O., Panitz, J.A. & Prosa, T.J. (2009). Prospects for nanobiology with atom-probe tomography. MRS Bull 34, 744749.CrossRefGoogle Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nat Lett 464, 571574.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Corbin, G.J., Dellby, S., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.Google Scholar
Larson, D.J., Camus, P.P. & Kelly, T.F. (1993). Simulated electron beam trajectories toward a field ion microscopy specimen. Appl Surf Sci 67(1-4), 473480.CrossRefGoogle Scholar
Midgley, P.A., Ward, E.P.W., Hungria, A.B. & Thomas, J.M. (2007). Nanotomography in the chemical, biological and materials sciences. Chem Soc Rev 36, 14771494.CrossRefGoogle ScholarPubMed
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: Oxford University Press.CrossRefGoogle Scholar
Miller, M.K. & Forbes, R.G. (2009). Tutorial review: Atom probe tomography. Mater Charact 60, 461469.Google Scholar
Miller, M.K. & Kelly, T.F. (2010). The atom tomography (ATOM) concept. Microsc Microanal 16(Suppl 2), 18561857.Google Scholar
Miller, M.K. & Smith, G.D.W. (1989). Atom Probe Microanalysis: Principles and Applications to Materials Problems. Pittsburgh, PA: Materials Research Society.Google Scholar
Moody, M.P., Gault, B., Stephenson, L.T., Marceau, R.K.W., Powles, R.C., Ceguerra, A.V., Breen, A.J. & Ringer, S.P. (2011). Lattice rectification in atom probe tomography: Toward true three-dimensional atomic microscopy. Micros Microanal 17, 226239.CrossRefGoogle ScholarPubMed
Moore, J.S., Jones, K.S., Kennel, H. & Corcoran, S. (2008). 3-D analysis of semiconductor dopant distributions in a patterned structure using LEAP. Ultramicroscopy 108, 536539.Google Scholar
Panitz, J.A. & Foesch, J.A. (1976). Areal detection efficiency of channel electron multiplier arrays. Rev Sci Instrum 47(1), 4449.Google Scholar
Petersen, T.C. & Ringer, S.P. (2009). Electron tomography using a geometric surface-tangent algorithm: Application to atom probe specimen morphology. J Appl Phys 105, 103518. Google Scholar
Petersen, T.C. & Ringer, S.P. (2010). An electron tomography algorithm for reconstructing 3D morphology using surface tangents of projected scattering interfaces. Comput Phys Commun 181, 676682.CrossRefGoogle Scholar
Rodenburg, J.M., Hurst, A.C. & Cullis, A.G. (2007). Transmission microscopy without lenses for objects of unlimited size. Ultramicroscopy 107, 227231.CrossRefGoogle ScholarPubMed
Scott, M.C., Chen, C.-C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., Dahmen, U., Regan, B.C. & Miao, J. (2012). Electron tomography at 2.4-angstrom resolution. Nature 483, 444447.CrossRefGoogle ScholarPubMed
Seidman, D.N. & Stiller, K. (2009). An atom-probe tomography primer. MRS Bull 34(10), 717724.CrossRefGoogle Scholar
Seynaeve, P.C. & Broos, J.I. (1995). The history of tomography. J Belge Radiol 78(5), 284288.Google Scholar
Stephenson, L.T., Moody, M.P., Liddicoat, P.V. & Ringer, S.P. (2007). New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc Microanal 13, 448463.Google Scholar
Suzuki, K., Miki, S., Shiki, S., Kobayashi, Y., Chiba, K., Wang, Z. & Ohkubo, M. (2008). Ultrafast ion detection by superconducting NbN thin-film nanowire detectors for time-of-flight mass spectrometry. Physica C 468, 20012003.Google Scholar
Urban, K.W. (2008). Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506510.Google Scholar
Voyles, P., Muller, D. & Kirkland, F.I. (2004). Depth-dependent imaging of individual dopant atoms in silicon. Microsc Microanal 10, 291300.Google Scholar
Vurpillot, F. (2001). Etude de la Fonction de Transfert Point-Image de la Sonde Atomique Tomographique. PhD Thesis, Groupe de Physiques des Matériaux. Rouen, France: Université de Rouen.Google Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (1999). The shape of field emitters and the ion trajectories in three-dimensional atom probes. J Microsc 196(3), 332336.Google Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (2001a). A new approach to the interpretation of atom probe field-ion microscopy images. Ultramicroscopy 89, 137144.Google Scholar
Vurpillot, F., Da Costa, G., Menand, A. & Blavette, D. (2001b). Structural analyses in three-dimensional atom probe: A Fourier transform approach. J Microsc 203(3), 295302.Google Scholar
Vurpillot, F., Renaud, L. & Blavette, D. (2003). A new step towards the lattice reconstruction in 3DAP. Ultramicroscopy 95, 223229.Google Scholar
Xin, H.L. & Muller, D.A. (2010). Three-dimensional imaging in aberration-corrected electron microscopes. Microsc Microanal 16, 445455.Google Scholar
Zen, N., Suzuki, K., Shiki, S. & Ohkubo, M. (2009). Niobium superconducting strip line detectors (SSLD) for time-of-flight mass spectroscopy (TOF-MS). Physica C 469, 16841687.CrossRefGoogle Scholar