Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T20:27:37.318Z Has data issue: false hasContentIssue false

Atomic-Resolution STEM in the Aberration-Corrected JEOL JEM2200FS

Published online by Cambridge University Press:  03 January 2008

Robert F. Klie
Affiliation:
Institute for Advanced Electron Microscopy, Brookhaven National Laboratory, Upton, NY 11973, USA
Craig Johnson
Affiliation:
Institute for Advanced Electron Microscopy, Brookhaven National Laboratory, Upton, NY 11973, USA
Yimei Zhu
Affiliation:
Institute for Advanced Electron Microscopy, Brookhaven National Laboratory, Upton, NY 11973, USA
Get access

Abstract

We report on the performance of our aberration-corrected JEOL-JEM2200FS electron microscope. This high-resolution field-mission TEM/STEM is equipped with a Schottky field-emission gun operated at 200 kV, a CEOS probe corrector, and an in-column energy filter. We focus on the performance of the probe corrector and show that the Si [110] dumbbell structure can be routinely resolved in STEM mode with the power spectrum indicating a probe size of ~1 Å. Ronchigram analysis suggests that the constant phase area is extended from 15 mrad to 35 mrad after corrector tuning. We also report the performance of our newly installed JEOL-JEM2200MCO, an upgraded version of the JEM2200FS, equipped with two CEOS aberration correctors (and a monochromator), one for the probe-forming lens and the other for the postspecimen objective lens. Based on Young's fringe analysis of Au particles on amorphous Ge, initial results show that the information limit in TEM mode with the aberration correction (Cs = −3.8 μm) is ~0.12 nm. Materials research applications using these two instruments are described including atomic-column-resolved Z-contrast imaging and electron energy-loss spectroscopy of oxide hetero-interfaces and strain mapping of a SrTiO3 tilt-grain boundary. The requirements for a high-precision TEM laboratory to house an aberration-corrected microscope are also discussed.

Type
Research Article
Copyright
© 2008 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amali, A. & Rez, P. (1997). Theory of lattice resolution in high-angle annular dark-field images. Microsc Microanal 3, 2846.Google Scholar
Borisevich, A.Y., Lupini, A.R. & Pennycook, S.J. (2006). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Nat Acad Sci USA 103, 30443048.Google Scholar
Farrell, H.H. & Palmstrom, C.J. (1990). Reflection high-energy electron-diffraction characteristic absences in GaAs(100) (2 × 4)-As—A tool for determining the surface stoichiometry. J Vac Sci Technol B 8, 903907.Google Scholar
Haider, M., Uhlemann, S. & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.Google Scholar
Hillyard, S., Loane, R.F. & Silcox, J. (1993). Annular dark-field imaging—resolution and thickness effects. Ultramicroscopy 49, 1425.Google Scholar
Hÿtch, M.J., Snoeck, E. & Kilaas, R. (1998). Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131146.Google Scholar
James, E.M. & Browning, N.D. (1999a). Atomic resolution scanning transmission electron microscopy on the 200 kV FEGTEM. Scanning 21, 9192.Google Scholar
James, E.M. & Browning, N.D. (1999b). Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78, 125139.Google Scholar
James, E.M., Xin, Y. & Browning, N.D. (1999). Optimizing the STEM performance of the JEOL 2010F 200kV FEGTEM. In Electron Microscopy and Analysis 1999. Bristol: Iop Publishing Ltd.
Johnson, C.L., Hÿtch, M.J. & Buseck, P.R. (2004). Nanoscale waviness of low-angle grain boundaries. Proc Natl Acad Sci USA 101, 1793617939.Google Scholar
Kim, M., Duscher, G., Browning, N.D., Sohlberg, K., Pantelides, S.T. & Pennycook, S.J. (2001). Nonstoichiometry and the electrical activity of grain boundaries in SrTiO3. Phys Rev Lett 86, 40564059.Google Scholar
Kirkland, E.J. (1998). Advanced Computing in Electron Microscopy. New York: Plenum.
Klie, R.F., Beleggia, M., Zhu, Y., Buban, J.P. & Browning, N.D. (2003). Atomic-scale model of the grain boundary potential in perovskite oxides. Phys Rev B 68, 214101.Google Scholar
Klie, R.F. & Browning, N.D. (2000). Atomic scale characterization of oxygen vacancy segregation at SrTiO3 grain boundaries. Appl Phys Lett 77, 37373739.Google Scholar
Klie, R.F., Zhu, Y., Altman, E.I. & Liang, Y. (2005). Atomic structure of epitaxial SrTiO3-GaAs(001) heterojunctions. Appl Phys Lett 87, 143106143109.Google Scholar
LaBella, V.P., Yang, H., Bullock, D.W., Thibado, P.M., Kratzer, P. & Scheffler, M. (1999). Atomic structure of the GaAs(001)-(2 × 4) surface resolved using scanning tunneling microscopy and first-principles theory. Phys Rev Lett 83, 29892992.Google Scholar
Loane, R.F., Xu, P. & Silcox, J. (1992). Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40, 121138.Google Scholar
Muller, D.A. & Grazul, J. (2001). Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. J Electron Microsc 50, 219226.Google Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. & Pennycook, S.J. (2004a). Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741.Google Scholar
Nellist, P.D., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z., Lupini, A.R. & Pennycook, S.J. (2004b). Towards sub-0.5 angstrom beams through aberration corrected STEM. In Electron Microscopy and Analysis 2003, Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference, September 3–5, 2003, pp. 159164. New York: Institute of Physics.
Ohtomo, A., Muller, D.A., Grazul, J.L. & Hwang, H.Y. (2002). Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378380.Google Scholar
Pennycook, S.J. & Boatner, L.A. (1988). Chemically sensitive structure-imaging with a scanning-transmission electron-microscope. Nature 336, 565567.Google Scholar
Schmidt, W.G., Bechstedt, F., Lu, W. & Bernholc, J. (2002). Interplay of surface reconstruction and surface electric fields in the optical anisotropy of GaAs(001). Phys Rev B 66, 085334.Google Scholar
Varela, M., Findlay, S.D., Lupini, A.R., Christen, H.M., Borisevich, A.Y., Dellby, N., Krivanek, O.L., Nellist, P.D., Oxley, M.P., Allen, L.J. & Pennycook, S.J. (2004). Spectroscopic imaging of single atoms within a bulk solid. Phys Rev Lett 92, 095502.Google Scholar
Zhang, Z.L., Sigle, W., Kurtz, W. & Ruhle, M. (2002a). Electronic and atomic structure of a dissociated dislocation in SrTiO3. Phys Rev B 66, 214112.Google Scholar
Zhang, Z.L., Sigle, W., Phillipp, F. & Ruhle, M. (2003). Direct atom-resolved imaging of oxides and their grain boundaries. Science 302, 846849.Google Scholar
Zhang, Z.L., Sigle, W. & Ruhle, M. (2002b). Atomic and electronic characterization of the a [100] dislocation core in SrTiO3. Phys Rev B 66, 94108.Google Scholar