Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T01:45:19.542Z Has data issue: false hasContentIssue false

Atomic-Resolution Cryo-STEM Across Continuously Variable Temperatures

Published online by Cambridge University Press:  05 June 2020

Berit H. Goodge
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853, USA Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853, USA
Elisabeth Bianco
Affiliation:
Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853, USA
Noah Schnitzer
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853, USA
Henny W. Zandbergen
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands HennyZ, 2223 GL Katwijk, The Netherlands
Lena F. Kourkoutis*
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY14853, USA Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY14853, USA
*
*Author for correspondence: Lena F. Kourkoutis, E-mail: [email protected]
Get access

Abstract

Atomic-resolution cryogenic scanning transmission electron microscopy (cryo-STEM) has provided a path to probing the microscopic nature of select low-temperature phases in quantum materials. Expanding cryo-STEM techniques to broadly tunable temperatures will give access to the rich temperature-dependent phase diagrams of these materials. With existing cryo-holders, however, variations in sample temperature significantly disrupt the thermal equilibrium of the system, resulting in large-scale sample drift. The ability to tune the temperature without negative impact on the overall instrument stability is crucial, particularly for high-resolution experiments. Here, we test a new side-entry continuously variable temperature dual-tilt cryo-holder which integrates liquid nitrogen cooling with a 6-pin micro-electromechanical system (MEMS) sample heater to overcome some of these experimental challenges. We measure consistently low drift rates of 0.3–0.4 Å/s and demonstrate atomic-resolution cryo-STEM imaging across a continuously variable temperature range from ~100 K to well above room temperature. We conduct additional drift stability measurements across several commercial sample stages and discuss implications for further developments of ultra-stable, flexible cryo-stages.

Type
Software and Instrumentation
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, LF, Bigelow, WC, Jose-Yacaman, M, Nackashi, DP, Damiano, J & Mick, SE (2009). A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc Res Technol 72, 208215.CrossRefGoogle ScholarPubMed
Berruto, G, Madan, I, Murooka, Y, Vanacore, G, Pomarico, E, Rajeswari, J, Lamb, R, Huang, P, Kruchkov, A, Togawa, Y, LaGrange, T, McGrouther, D, Rønnow, H & Carbone, F (2018). Laser-induced skyrmion writing and erasing in an ultrafast cryo-lorentz transmission electron microscope. Phys Rev Lett 120, 117201.CrossRefGoogle Scholar
Blackman, M, Curzon, AE & Pawlowicz, AT (1963). Use of an electron beam for detecting superconducting domains of lead in its intermediate state. Nature 4902, 157.CrossRefGoogle Scholar
Boersch, H, Bostanjoglo, O, Lischke, B, Niedrig, H & Schmidt, L (1966) Electron microscopy with liquid helium cooled stages. In 6th International Congress for Electron Microscopy, Kyoto, Japan, Aug. 28 – Sept. 4, 1966, Maruzen, Tokyo, pp. 167–168.Google Scholar
Colliex, C & Jouffrey, B (1968). Un nouveau porte-objet inclinable refroidi à l'hélium liquide. J Microsc 7, 601608.Google Scholar
El Baggari, I & Kourkoutis, LF (2019). Developments in electron microscopy of exotic states at oxide interfaces: Cryogenic imaging and advanced detectors. Appl Surf Sci 482, 2730.Google Scholar
El Baggari, I, Savitzky, BH, Admasu, AS, Kim, J, Cheong, SW, Hovden, R & Kourkoutis, LF (2018). Nature and evolution of incommensurate charge order in manganites visualized with cryogenic scanning transmission electron microscopy. Proc Natl Acad Sci USA 115, 14451450.CrossRefGoogle ScholarPubMed
Fernández-Morán, H (1960). Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II. Ann N Y Acad Sci 85, 689713.CrossRefGoogle ScholarPubMed
Gaulandris, F, Simonsen, SB, Wagner, JB, Mølhave, K, Muto, S & Kuhn, LT (2020). Methods for calibration of specimen temperature during in situ transmission electron microscopy experiments. Microsc Microanal 26, 317.CrossRefGoogle ScholarPubMed
Goringe, MJ & Valdrè, U (1964). Observation of solid neon by transmission electron microscopy. Philos Mag 9, 897900.CrossRefGoogle Scholar
Harada, K, Matsuda, T, Bonevich, J, Igarashi, M, Kondo, S, Pozzi, G, Kawabe, U & Tonomura, A (1992). Real-time observation of vortex lattices in a superconductor by electron microscopy. Nature 360, 5153.CrossRefGoogle Scholar
Henderson, R, Raeburn, C & Vigers, G (1991). A side-entry cold holder for cryo-electron microscopy. Ultramicroscopy 35, 4553.CrossRefGoogle ScholarPubMed
Honjo, G, Kitamura, N, Shimaoka, K & Mihama, K (1956). Low temperature specimen method for electron diffraction and electron microscopy. J Phys Soc Japan 11, 527536.CrossRefGoogle Scholar
Hörl, EM (1968). Liquid helium cooled stage with a transverse magnetic field. Rev Sci Instrum 39, 10271028.CrossRefGoogle Scholar
Hotz, MT, Corbin, G, Dellby, N, Lovejoy, TC, Skone, GS, Blazit, JD, Kociak, M, Stephan, O, Tence, M, Zandbergen, H & Krivanek, OL (2018). Optimizing the Nion STEM for in-situ experiments. Microsc Microanal 24, 11321133.CrossRefGoogle Scholar
Hudak, BM, Depner, SW, Waetzig, GR, Talapatra, A, Arroyave, R, Banerjee, S & Guiton, BS (2017). Real-time atomistic observation of structural phase transformations in individual hafnia nanorods. Nat Commun 8, 15316.CrossRefGoogle ScholarPubMed
Klie, RF, Walkosz, W, Yang, G & Zhao, Y (2011) Variable temperature electron energy-loss spectroscopy. In Pennycook, Stephen J. & Nellist, Peter D. (eds.), New York, NY: Springer Scanning Transmission Electron Microscopy, pp. 689723.CrossRefGoogle Scholar
Klie, RF, Zheng, JC, Zhu, Y, Varela, M, Wu, J & Leighton, C (2007). Direct measurement of the low-temperature spin-state transition in LaCoO3. Phys Rev Lett 99, 14.CrossRefGoogle ScholarPubMed
Knoll, M & Ruska, E (1932). Das Elektronenmikroskop. Z Physik 78, 318339.CrossRefGoogle Scholar
Leisegang, S (1954) Versuch mit einer Kuehlbaren Objektpatrone. In Proceedings of the Third International Congress on Electron Microscopy, Ross, R. (Ed.), pp. 184188. London: Royal Society.Google Scholar
Matricardi, VR, Lehmann, WG, Kitamura, N & Silcox, J (1967). Electron microscope observations of ferromagnetic domains in chromium tribromide. J Appl Phys 38, 12971298.CrossRefGoogle Scholar
Mele, L, Konings, S, Dona, P, Evertz, F, Mitterbauer, C, Faber, P, Schampers, R & Jinschek, JR (2016). A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes. Microsc Res Technol 79, 239250.CrossRefGoogle ScholarPubMed
Minor, AM, Denes, P & Muller, DA (2019). Cryogenic electron microscopy for quantum science. MRS Bull 44, 961966.CrossRefGoogle Scholar
Perez-Garza, HH, Morsink, D, Xu, J, Sholkina, M, Pivak, Y, Pen, M, van Weperen, S & Xu, Q (2016) The “Climate” system: Nano-reactor for in-situ analysis of solid-gas interactions inside the TEM. In 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 85–90. Sendai, Japan: IEEE.CrossRefGoogle Scholar
Qiao, Q, Zhou, S, Tao, J, Zheng, JC, Wu, L, Ciocys, ST, Iavarone, M, Srolovitz, DJ, Karapetrov, G & Zhu, Y (2017). Anisotropic charge density wave in layered 1T-TiSe2. Phys Rev Mater 1, 054002.CrossRefGoogle Scholar
Sang, X, Xie, Y, Yilmaz, DE, Lotfi, R, Alhabeb, M, Ostadhossein, A, Anasori, B, Sun, W, Li, X, Xiao, K, Kent, PRC, van Duin, ACT, Gogotsi, Y & Unocic, RR (2018). In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides. Nat Commun 9, 2266.CrossRefGoogle ScholarPubMed
Savitzky, B, El Baggari, I, Clement, C, Waite, E, Goodge, B, Baek, D, Sheckelton, J, Pasco, C, Nair, H, Schreiber, N, Hoffman, J, Admasu, A, Kim, J, Cheong, SW, Bhattacharya, A, Schlom, D, McQueen, T, Hovden, R & Kourkoutis, L (2018). Image registration of low signal-to-noise cryo-STEM data. Ultramicroscopy 191, 5665.CrossRefGoogle ScholarPubMed
Tao, J, Niebieskikwiat, D, Jie, Q, Schofield, MA, Wu, L, Li, Q & Zhu, Y (2011). Role of structurally and magnetically modified nanoclusters in colossal magnetoresistance. Proc Natl Acad Sci USA 108, 2094120946.CrossRefGoogle ScholarPubMed
Valdre, U & Goringe, MJ (1965). A liquid helium cooled goniometer stage for an electron microscope. J Sci Instrum 42, 268269.CrossRefGoogle Scholar
van Omme, JT, Zakhozheva, M, Spruit, RG, Sholkina, M & Pérez Garza, HH (2018). Advanced microheater for in situ transmission electron microscopy: Enabling unexplored analytical studies and extreme spatial stability. Ultramicroscopy 192, 1420.CrossRefGoogle ScholarPubMed
Venables, JA (1963). Liquid helium cooled tilting stage for an electron microscope. Rev Sci Instrum 34, 582583.CrossRefGoogle Scholar
Watanabe, H & Ishikawa, I (1967). A liquid helium cooled stage for an electron microscope. Jpn J Appl Phys 6, 8388.CrossRefGoogle Scholar
Williams, RE, Mccomb, DW & Subramaniam, S (2019). Cryo-electron microscopy instrumentation and techniques for life sciences and materials science. MRS Bull 44, 929934.CrossRefGoogle Scholar
Zachman, MJ, Hachtel, JA, Idrobo, JC & Chi, M (2020). Emerging electron microscopy techniques for probing functional interfaces in energy materials. Angewandte Chemie 132(4), 14001412.CrossRefGoogle Scholar
Zhao, W, Li, M, Chang, CZ, Jiang, J, Wu, L, Liu, C, Moodera, JS, Zhu, Y & Chan, MH (2018). Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO3 interface. Sci Adv 4, 18.CrossRefGoogle ScholarPubMed
Zhao, X, Jin, C, Wang, C, Du, H, Zang, J, Tian, M, Che, R & Zhang, Y (2016). Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks. Proc Natl Acad Sci USA 113, 49184923.CrossRefGoogle ScholarPubMed