Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-01T00:05:29.963Z Has data issue: false hasContentIssue false

Atomic Force Microscopy of Removal of Dentin Smear Layers

Published online by Cambridge University Press:  16 July 2007

Luiz Henrique Carvalho Batista
Affiliation:
Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A. C. Simões, Tabuleiro do Martins, 57072-970 Maceió-AL, Brazil
José Ginaldo da Silva Júnior
Affiliation:
Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A. C. Simões, Tabuleiro do Martins, 57072-970 Maceió-AL, Brazil
Milton Fernando Andrade Silva
Affiliation:
Faculdade de Odontologia, Universidade Federal de Alagoas, Campus A. C. Simões, Tabuleiro do Martins, 57072-970 Maceió-AL, Brazil
Josealdo Tonholo
Affiliation:
Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A. C. Simões, Tabuleiro do Martins, 57072-970 Maceió-AL, Brazil
Get access

Abstract

The regular periodontal practice of scaling and root planing produces a smear layer on the root surface that is detrimental to the readhesion of tissues during subsequent regeneration therapy. Although it has been demonstrated that gels containing the chelating agent ethylenediaminetetraacetic acid (EDTA) can assist in the removal of this contaminating layer, no quantitative method is yet available by which to evaluate the efficiency of the treatment. In this article, the power of atomic force microscopy (AFM) as a technique for monitoring and mapping the surfaces of dentinal roots is demonstrated. Roughness parameters of teeth that had been scaled and root planed were determined from AFM images acquired both before and after treatment with EDTA. The results confirmed that EDTA is an efficient cleaning agent and that dentinal samples free from a smear layer are significantly rougher than the same samples covered by a contaminating layer. AFM analysis is superior to alternative methods involving scanning electron microscopy because the same sample section can be analyzed many times, thus permitting it to be used as both the control and the treatment surface.

Type
BIOLOGICAL APPLICATIONS
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Babay, N. (2002). The effect of tetracycline hydrochloride on the attachment of gingival fibroblasts. A scanning electron microscopic study on the effect of ultrasonic scaling before root conditioning. Odontostomatol Trop 25, 1317.Google Scholar
Baker, P.J., Rotch, H.A., Trombelli, L. & Wikesjo, U.M. (2000). An in vitro screening model to evaluate root conditioning protocols for periodontal regenerative procedures. J Periodontol 71, 11391143.Google Scholar
Batista, L.H.C., Sampaio, J.E., Pilatti, G.L. & Shibli, J.A. (2005). Efficacy of EDTA-T gel for smear layer removal at root surfaces. Quintessence Int 36, 551558.Google Scholar
Binning, G., Quate, C. & Gerber, C.H. (1986). Atomic force microscope. Phys Rev Lett 56, 930933.Google Scholar
Blomlöf, J., Jansson, L., Blomlof, L. & Lindskog, S. (1995). Long-time etching at low pH jeopardizes periodontal healing. J Clin Periodontol 22, 459463.Google Scholar
Blomlöf, J. & Lindskog, S. (1995). Periodontal tissue-vitality after different etching modalities. J Clin Periodontol 22, 464468.Google Scholar
Claffey, N. & Egelberg, J. (1995). Clinical indicators of probing attachment loss following initial periodontal treatment in advanced periodontitis patients. J Clin Periodontol 22, 690696.Google Scholar
Drisko, C.H. (2001). Nonsurgical periodontal therapy. Periodontol 2000 25, 7788.Google Scholar
Eliades, G., Palaghias, G. & Vougiouklakis, G. (1997). Effect of acidic conditioners on dentin morphology, molecular composition and collagen conformation in situ. Dental Mater 13, 2433.Google Scholar
Farina, M., Schemmel, A., Weissmuller, G., Cruz, R., Kachar, B. & Bisch, P. (1999). Atomic force microscopy study of tooth surfaces. J Struct Biol 125, 3949.Google Scholar
Froum, S., Weinberg, M., Novak, J., Mailhot, J., Mellonig, J., Van Dyke, T., McClain, P., Papapanou, P.N., Childers, G., Ciancio, S., Blieden, T., Polson, A., Greenstein, G., Yukna, R., Wallace, M.L., Patters, M. & Wagener, C. (2004). A multicenter study evaluating the sensitization potential of enamel matrix derivative after treatment of two infrabony defects. J Periodontol 75, 10011008.Google Scholar
Gamal, A.Y. & Mailhot, J.M. (2003). The effects of EDTA gel conditioning exposure time on periodontitis-affected human root surfaces: Surface topography and PDL cell adhesion. J Int Acad Periodontol 5, 1122.Google Scholar
Hanes, P.J., Polson, A.M. & Frederick, G.T. (1988). Initial wound healing attachments to demineralized dentin. J Periodontol 59, 176183.Google Scholar
Isik, G., Tarim, B., Hafez, A.A., Yalçin, F.S., Onan, U. & Cox, C.F. (2000). A comparative scanning electron microscopic study on the characteristics of demineralized dentin root surface using different tetracycline HCl concentrations and application times. J Periodontol 71, 219225.Google Scholar
Kinney, J.H., Balooch, M., Marshall, W. & Marshall, S.J. (1993). Atomic force microscopic study of dimensional changes in human dentine during drying. Arch Oral Biol 38, 10031007.Google Scholar
Obeid, P.R., D'Hoore, W. & Bercy, P. (2004). Comparative clinical responses related to the use of various periodontal instrumentation. J Clin Periodontol 31, 193199.Google Scholar
Oliveira, S., Pugach, M., Hilton, J., Watanabe, L., Marshall, S.J. & Marshall, G.W., Jr. (2003). The influence of the dentin smear layer on adhesion: A self-etching primer vs. a total-etch system. Dental Mater 19, 758767.Google Scholar
Pant, V., Dixit, J., Agrawal, A.K., Seth, P.K. & Pant, A.B. (2004). Behavior of human periodontal ligament cells on CO2 laser irradiated dentinal root surfaces: An in vitro study. J Periodontal Res 39, 373379.Google Scholar
Rosing, C.K., Aass, A.M., Mavropoulos, A. & Gjermo, P. (2005). Clinical and radiographic effects of enamel matrix derivative in the treatment of intrabony periodontal defects: A 12-month longitudinal placebo-controlled clinical trial in adult periodontitis patients. J Periodontol 76, 129133.Google Scholar
Saeki, K., Marshall, S.J., Gansky, S.A. & Marshall, Jr., G.W. (2001). Etching characteristics of dentin: Effect of ferric chloride in citric acid. J Oral Rehabil 28, 301308.Google Scholar
Sampaio, J.E., Abi-Rached, R.S, Pilatti, G.L., Theodoro, L.H. & Batista, L.H. (2003). Effectiveness of EDTA and EDTA-T brushing on the removal of root surface smear layer. Braz Oral Res 17, 319325.Google Scholar
Sampaio, J.E., Theodoro, L.H., Correa, M.A. & Mendes, A.J. (2005). A comparative SEM study of smear layer removal by detergents and EDTA on the root surface. Int J Periodontol Restor Dent 25, 157163.Google Scholar
Silva, M.F.A., Davies, R.M., Stewart, B., Devizio, W., Tonholo, J., Silva Júnior, J.G. & Pretty, I.A. (2006). Effect of whitening gels on the surface roughness of restorative materials in situ. Dental Mater 22, 919924.Google Scholar
Zaman, K.U., Sugaya, T., Hongo, O. & Kato, H. (2000). A study of attached and oriented human periodontal ligament cells to periodontally diseased cementum and dentin after demineralizing with neutral and low pH etching solution. J Periodontol 71, 10941099.Google Scholar