Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T19:57:49.966Z Has data issue: false hasContentIssue false

Atomic Force Microscopy (Afm) of Chromatin Fibers: What Can We Learn?

Published online by Cambridge University Press:  02 July 2020

S.H. Leuba
Affiliation:
Physical Molecular Biology, LRBGE, NCI, NIH, Bethesda, MD20892-5055;, [email protected]
R. Bash
Affiliation:
Arizona State University, Tempe, AZ85287-1504;, [email protected]
D. Lohr
Affiliation:
Arizona State University, Tempe, AZ85287-1504;, [email protected]
S. M. Lindsay
Affiliation:
Arizona State University, Tempe, AZ85287-1504;, [email protected]
J. Zlatanova
Affiliation:
Argonne National Laboratory, Argonne, IL60439;, [email protected]
Get access

Extract

DNA in the eukaryotic nucleus is not naked. Instead, it is complexed at frequent intervals with an equal molecular mass of histones to form nucleosomes. In the nucleosome, ∼146 bp of DNA are wrapped around a core histone octamer composed of two copies each of histones H4, H3, H2B, and H2A. The family of linker histones (H1, H5 and H1°) bind to the DNA between successive nucleosomes and help maintain the three-dimensional arrangement of nucleosomes within the chromatin fiber. AFM studies of chromatin fibers with the histones either selectively trypsinized or selectively reconstituted demonstrate a specific role for the H3 N-termini in maintaining fiber structure, in conjunction with the 80 amino acid linker histone globular domain. These AFM results structurally agree with the location of the H3 N-termini in the histone octamer or the nucleosome core particle.

Type
Biological Applications of Scanning Probe Microscopies
Copyright
Copyright © Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Leuba, S. H. et al, Proc. Natl. Acad. Sci. USA 91 (1994) 11621.Google Scholar
2.Yang, G. et al., Nature Struct. Biol. 1 (1994) 761.CrossRefGoogle Scholar
3.Zlatanova, J. et al, Biophys. J. 74 (1998) 2554.CrossRefGoogle Scholar
4.Leuba, S. H. et al. Biophys. J. 74 (1998a, b) 2823, 2830.CrossRefGoogle Scholar
5.Arents, G. and Moudrianakis, E. N.. Proc. Natl. Acad. Sci. USA 90 (1994) 10489.Google Scholar
6.Luger, K. et al. Nature 389 (1997) 250.CrossRefGoogle Scholar
7.Rich, A.. Proc. Natl. Acad. Sci. USA 95 (1998) 13999.Google Scholar
8.Wang, M. D. et al. Science 282 (1998) 902.CrossRefGoogle Scholar
9.Marko, J. F. and Siggia, E.D.. Biophys. J. 73 (1997) 2173.CrossRefGoogle Scholar
10. This study was supported by NIH grants to J.Z, NSF grant and Molecular Imaging (Phoenix, AZ) grant to S.M.L. S.H.L is an NCI Scholar. Some of this work can be observed at tlie website http://rex.nci.nili.gov/RESEARCH/hasic/lrbge/leuba.html.Google Scholar