Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T23:02:24.647Z Has data issue: false hasContentIssue false

Atom Probe Tomography: A Technique for Nanoscale Characterization

Published online by Cambridge University Press:  01 June 2004

M.K. Miller
Affiliation:
Microscopy, Microanalysis, Microstructures Group, Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6136, USA
E.A. Kenik
Affiliation:
Microscopy, Microanalysis, Microstructures Group, Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6136, USA
Get access

Abstract

Atom probe tomography is a technique for the nanoscale characterization of microstructural features. Analytical techniques have been developed to estimate the size, composition, and other parameters of features as small as 1 nm from the atom probe tomography data. These methods are outlined and illustrated with examples of yttrium-, titanium-, and oxygen-enriched particles in a mechanically alloyed, oxide-dispersion-strengthened steel.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bas, P., Bostel, A., Deconihout, B., & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298304.Google Scholar
Cerezo, A., Godfrey, T.J., Hyde, J.M., Sijbrandij, S.J., & Smith, G.D.W. (1994). Improvements in three-dimensional atom probe design. Appl Surf Sci 76/77, 374381.Google Scholar
Cerezo, A., Godfrey, T.J., & Smith, G.D.W. (1988). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59, 862866.Google Scholar
Cerezo, A., Godfrey, T.J., & Smith, G.D.W. (1998). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59, 862866.Google Scholar
Deconihout, B., Bostel, A., Bas, P., Chambreland, S., Letellier, L., Danoix, F., & Blavette, D. (1994). Investigation of some selected metallurgical problems with the tomographic atom probe. Appl Surf Sci 76/77, 145154.Google Scholar
Deconihout, B., Bostel, A., Menand, A., Sarrau, J.M., Bouet, M., Chambreland, S., & Blavette, D. (1993). On the development of a 3D tomographic atom probe. Appl Surf Sci 67, 444450.Google Scholar
Deconihout, B., Renaud, L., Da Costa, G., Bouet, M., Bostel, A., & Blavette, D. (1998). Implementation of an optical tomographic atom probe. Ultramicroscopy 73, 253260.Google Scholar
Hyde, J.M. (1993). Computer modelling analysis of microscale phase transformations. Ph.D. thesis, Oxford, UK: University of Oxford.
Johnson, C.A. & Klotz, J.H. (1974). The atom probe and Markov chain statistics of clustering. Technometrics 16, 483493.Google Scholar
Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M., & Bajikar, S.S. (1995). High mass resolution local-electrode atom probe. U.S. Patent No. 5440124.
Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M., & Bajikar, S.S. (1996). On the many advantages of local-electrode atom probes. Ultramicroscopy 62, 2942.Google Scholar
Kelly, T.F., Mancini, D.C., McCarthy, J.M., & Zreiba, N.A. (1991). Proposed configurations for a high-repetition-rate position-sensitive atom probe. Surf Sci 246, 396407.Google Scholar
Lorensen, W.E. & Cline, H.E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. Comput Graph 21, 163169.Google Scholar
Miller, M.K. (1991). Concepts in atom probe designs. Surf Sci 246, 428433.Google Scholar
Miller, M.K. (1992). Implementation of the optical atom probe. Surf Sci 266, 494500.Google Scholar
Miller, M.K. (1998). A transparent anode array detector for 3D atom probes. Microsc Microanal 4(suppl. 2), 8081.Google Scholar
Miller, M.K. (2000). Atom Probe Tomography: Analysis at the Atomic Level. New York: Kluwer Academic/Plenum.
Miller, M.K., Cerezo, A., Hetherington, M.G., & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford, UK: Oxford University Press.
Miller, M.K., Shen, T.D., & Schwarz, R.B. (2003a). Atom probe studies of metallic glasses. J Non-Cryst Mater 317, 1016.Google Scholar
Miller, M.K., Wirth, B.D., & Odette, G.R. (2003b). Precipitation in neutron-irradiated Fe–Cu and Fe–Cu–Mn model alloys: A comparison of APT and SHNS data. Mater Sci Eng A353, 133139.Google Scholar
Müller, E.W., Panitz, J.A., & Mclean, S.B. (1968). Atom probe field ion microscopy. Rev Sci Instrum 39, 8386.Google Scholar
Sobottka, S.E. & Williams, M.B. (1988). Delay line readout of microchannel plates. IEEE Trans Nucl Sci 35, 348351.Google Scholar
Tsong, T.T., McLane, S.B., Ahmad, M., & Wu, C.S. (1982). Field evaporation events as Markov chains: A time-of-flight atom-probe study of iridium, Pt-Rh alloys and metallic glasses. J Appl Phys 53, 41804188.Google Scholar