Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T16:58:34.741Z Has data issue: false hasContentIssue false

Application of Multivariate Statistical Analysis to STEM X-ray Spectral Images: Interfacial Analysis in Microelectronics

Published online by Cambridge University Press:  11 October 2006

Paul G. Kotula
Affiliation:
Materials Characterization Department, Sandia National Laboratories, P.O. Box 5800, MS 0886, Albuquerque, NM 87185-0886, USA
Michael R. Keenan
Affiliation:
Materials Characterization Department, Sandia National Laboratories, P.O. Box 5800, MS 0886, Albuquerque, NM 87185-0886, USA
Get access

Abstract

Multivariate statistical analysis methods have been applied to scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectral images. The particular application of the multivariate curve resolution (MCR) technique provides a high spectral contrast view of the raw spectral image. The power of this approach is demonstrated with a microelectronics failure analysis. Specifically, an unexpected component describing a chemical contaminant was found, as well as a component consistent with a foil thickness change associated with the focused ion beam specimen preparation process. The MCR solution is compared with a conventional analysis of the same spectral image data set.

Type
Research Article
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boyce, B.L., Michael, J.R., & Kotula, P.G. (2004). Fatigue of metallic microdevices and the role of fatigue-induced surface oxides. Acta Mater 52, 16091619.Google Scholar
Goods, S.H., Buchheit, T.E., Janek, R.P., Michael, J.R., & Kotula, P.G. (2004). Oxide dispersion strengthening of nickel electrodeposits for microsystem applications. Metall Mater Trans A 35, 23512360.Google Scholar
Keenan, M.R. & Kotula, P.G. (2003). Apparatus and system for multivariate spectral analysis. U.S. Patent #6,584,413.
Keenan, M.R. & Kotula, P.G. (2004a). Accounting noise in the multivariate statistical analysis of TOF-SIMS data. Surf Int Anal 36, 203212.Google Scholar
Keenan, M.R. & Kotula, P.G. (2004b). Method of multivariate spectral analysis. U.S. Patent #6,675,106.
Keenan, M.R. & Kotula, P.G. (2004c). Multivariate statistical analysis of EEL-spectral images. Microsc Microanal 10(Suppl. 2), 874CD875CD.Google Scholar
Kotula, P.G. & Keenan, M.R. (2000). Automated unbiased information extraction of STEM-EDS spectrum images. Inst Phys Conf 165, 147148.Google Scholar
Kotula, P.G. & Keenan, M.R. (2003a). Automated analysis of large (>4 Gb) spectral images with efficient out-of-core RAM algorithms. Microsc Microanal 9(Suppl. 2), 152153.Google Scholar
Kotula, P.G. & Keenan, M.R. (2003b). X-ray spectral imaging in the STEM for microelectronics failure analysis. Microsc Microanal 9(Suppl. 2), 998999.Google Scholar
Kotula, P.G., Keenan, M.R., & Michael, J.R. (2003). Automated analysis of EDS spectral images in the SEM: A powerful new microanalysis technique. Microsc Microanal 9, 117.Google Scholar
Loehman, R.E. & Kotula, P.G. (2004). Spectral imaging analysis of interfacial reactions and microstructures in brazing of alumina by a Hf-Ag-Cu alloy. J Am Ceram Soc 87, 5559.Google Scholar
Mayer, T.M., Elam, J.W., George, S.M., Kotula, P.G., & Goeke, R.S. (2003). Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices. Appl Phys Lett 82, 28832885.Google Scholar
Mott, R.B., Waldman, C.G., Batcheler, R., & Friel, J.J. (1995). Position tagged spectrometry: A new approach for EDS spectrum imaging. In Proceedings of Microscopy and Microanalysis, 1995, Bailey, G.W., Ellisman, M.H., Hennigar, R.A. & Zaluzec, N.J. (Eds.), pp. 592593. New York: Jones and Begell Publishing.
Oliver, J.M., Pfeiffer, J.R., Surviladze, Z., Steinberg, S.L., Leiderman, K., Sanders, M.L., Wofsy, C., Zhang, J., Fan, H.-Y., Andrews, N., Bunge, S., Boyle, T.J., Kotula, P.G., & Wilson, B.S. (2003). Membrane receptor mapping: The membrane topography of FceRI signaling. In Membrane Receptor Mapping: The Membrane Topography of FceRI Signaling, Subcellular Biochemistry 37: Membrane Dynamics and Domains, P.J. Quinn, (Ed.), pp. 334. Kluwer Academic Press/Plenum Publishers.
Tauler, R. & de Juan, A. (2002). Multivariate curve resolution home page. Available at: http://www.ub.es/gesq/mcr/mcr.htm, last updated February 2005.
Titchmarsh, J.M. (1997). Extraction of information from STEM-EDX segregation profiles using multivariate statistical analysis. Microsc Microanal 3 (Suppl. 2), 937938.Google Scholar
Titchmarsh, J.M. (1999). EDX spectrum modeling and multivariate analysis of sub-nanometer segregation. Micron 30, 159171.Google Scholar
Titchmarsh, J.M. & Dumbill, S. (1996). Multivariate statistical analysis of FEG-STEM EDX spectra. J Microsc 184, 195207.Google Scholar
Titchmarsh, J.M., Dumbill, S., & Vatter, I.A. (1995). Investigation of interfacial segregation in steels using multivariate statistical analysis of EDX spectra. In Microbeam Analysis, Etz, E.S. (Ed.), pp. 259260. New York: VCH Publishers.
Wilson, B.S., Pfeiffer, J.R., Surviladze, Z., Steinberg, S.L., Zhang, J., Lieberman, K., Kotula, P.G., & Oliver, J.M. (2004). High resolution imaging shows distinct and independent behavior for GPI-anchored proteins, gangliosides and receptors in native membranes. Mol Biol Cell 15, 25802592.Google Scholar