Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-15T13:23:26.128Z Has data issue: false hasContentIssue false

Application of Fractal and Grey Level Co-Occurrence Matrix Analysis in Evaluation of Brain Corpus Callosum and Cingulum Architecture

Published online by Cambridge University Press:  26 June 2014

Igor Pantic*
Affiliation:
Institute of Medical Physiology, School of Medicine, University of Belgrade, Visegradska 26/II, 11129, Belgrade, Serbia
Sanja Dacic
Affiliation:
Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, 11000, Belgrade, Serbia
Predrag Brkic
Affiliation:
Institute of Medical Physiology, School of Medicine, University of Belgrade, Visegradska 26/II, 11129, Belgrade, Serbia
Irena Lavrnja
Affiliation:
Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Boulevard Despot Stefan 142, 11060 Belgrade, Serbia
Senka Pantic
Affiliation:
Institute of Histology, School of Medicine, University of Belgrade, Visegradska 26/II, 11129, Belgrade, Serbia
Tomislav Jovanovic
Affiliation:
Institute of Medical Physiology, School of Medicine, University of Belgrade, Visegradska 26/II, 11129, Belgrade, Serbia
Sanja Pekovic
Affiliation:
Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Boulevard Despot Stefan 142, 11060 Belgrade, Serbia
*
*Corresponding author. [email protected]
Get access

Abstract

This aim of this study was to assess the discriminatory value of fractal and grey level co-occurrence matrix (GLCM) analysis methods in standard microscopy analysis of two histologically similar brain white mass regions that have different nerve fiber orientation. A total of 160 digital micrographs of thionine-stained rat brain white mass were acquired using a Pro-MicroScan DEM-200 instrument. Eighty micrographs from the anterior corpus callosum and eighty from the anterior cingulum areas of the brain were analyzed. The micrographs were evaluated using the National Institutes of Health ImageJ software and its plugins. For each micrograph, seven parameters were calculated: angular second moment, inverse difference moment, GLCM contrast, GLCM correlation, GLCM variance, fractal dimension, and lacunarity. Using the Receiver operating characteristic analysis, the highest discriminatory value was determined for inverse difference moment (IDM) (area under the receiver operating characteristic (ROC) curve equaled 0.925, and for the criterion IDM≤0.610 the sensitivity and specificity were 82.5 and 87.5%, respectively). Most of the other parameters also showed good sensitivity and specificity. The results indicate that GLCM and fractal analysis methods, when applied together in brain histology analysis, are highly capable of discriminating white mass structures that have different axonal orientation.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, R.L., Silva, R.C., Pereira, F.G., Leite, N.J., Lorand-Metze, I. & Metze, K. (2006). The fractal dimension of nuclear chromatin as a prognostic factor in acute precursor B lymphoblastic leukemia. Cell Oncol 28(1–2), 5559.Google ScholarPubMed
Alvarenga, A.V., Pereira, W.C., Infantosi, A.F. & Azevedo, C.M. (2007). Complexity curve and grey level co-occurrence matrix in the texture evaluation of breast tumor on ultrasound images. Med Phys 34(2), 379387.CrossRefGoogle ScholarPubMed
Balestra, C., Marroni, A., Farkas, B., Peetrons, P., Vanderschueren, F., Duboc, E., Snoeck, T. & Germonpre, P. (2004). The fractal approach as a tool to understand asymptomatic brain hyperintense MRI signals. Fractals 12(1), 6772.CrossRefGoogle Scholar
Bedin, V., Adam, R.L., de Sa, B.C., Landman, G. & Metze, K. (2010). Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma. BMC Cancer 10, 260.CrossRefGoogle ScholarPubMed
Bloom, J.S. & Hynd, G.W. (2005). The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychol Rev 15(2), 5971.CrossRefGoogle ScholarPubMed
Cabrera, J. (2005). Texture analyzer. Avaliable at http//rbs.info.nih.gov/ij/plugins/texture.html. Accessed December 14, 2013.Google Scholar
Cornish, T.B. (2007). GLCM_TextureToo. Available at http://tobycornish.com/downloads/imagej/. Accessed December 14, 2013.Google Scholar
de Oliveira, M.S., Balthazar, M.L., D’Abreu, A., Yasuda, C.L., Damasceno, B.P., Cendes, F. & Castellano, G. (2011). MR imaging texture analysis of the corpus callosum and thalamus in amnestic mild cognitive impairment and mild Alzheimer disease. Am J Neuroradiol 32(1), 6066.CrossRefGoogle ScholarPubMed
Di Ieva, A. (2012). Fractal analysis of microvascular networks in malignant brain tumors. Clin Neuropathol 31(5), 342351.CrossRefGoogle ScholarPubMed
Di Ieva, A., Esteban, F.J., Grizzi, F., Klonowski, W. & Martin-Landrove, M. (2013 a). Fractals in the neurosciences, Part II: Clinical applications and future perspectives. Neuroscientist, doi:10.1177/1073858413513928, published online 20 December 2013.Google ScholarPubMed
Di Ieva, A., Grizzi, F., Jelinek, H., Pellionisz, A.J. & Losa, G.A. (2013 b). Fractals in the neurosciences, Part I: General principles and basic neurosciences. Neuroscientist, doi:10.1177/1073858413513927, published online December 20, 2013.Google ScholarPubMed
Esteban, F.J., Sepulcre, J., de Mendizabal, N.V., Goni, J., Navas, J., de Miras, J.R., Bejarano, B., Masdeu, J.C. & Villoslada, P. (2007). Fractal dimension and white matter changes in multiple sclerosis. NeuroImage 36(3), 543549.CrossRefGoogle ScholarPubMed
Gilmore, S., Hofmann-Wellenhof, R., Muir, J. & Soyer, H.P. (2009). Lacunarity analysis: A promising method for the automated assessment of melanocytic naevi and melanoma. PloS One 4(10), e7449.CrossRefGoogle ScholarPubMed
Gould, D.J., Vadakkan, T.J., Poche, R.A. & Dickinson, M.E. (2011). Multifractal and lacunarity analysis of microvascular morphology and remodeling. Microcirculation 18(2), 136151.CrossRefGoogle ScholarPubMed
Haralick, R., Shanmugam, K. & Dinstein, I. (1973). Textural features for image classification. IEEE Trans Syst Man Cybern SMC–3, 610621.CrossRefGoogle Scholar
Jones, D.K., Christiansen, K.F., Chapman, R.J. & Aggleton, J.P. (2013). Distinct subdivisions of the cingulum bundle revealed by diffusion MRI fibre tracking: Implications for neuropsychological investigations. Neuropsychologia 51(1), 6778.CrossRefGoogle ScholarPubMed
Joseph, G.B., Baum, T., Carballido-Gamio, J., Nardo, L., Virayavanich, W., Alizai, H., Lynch, J.A., McCulloch, C.E., Majumdar, S. & Link, T.M. (2011). Texture analysis of cartilage T2 maps: Individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls–data from the osteoarthritis initiative. Arthritis Res Ther 13(5), R153.CrossRefGoogle ScholarPubMed
Kalpana, R., Muttan, S. & Kumarasamy, N. (2011). Virus infection on brain white matter: Statistical analysis of DT MRI scans. Int J Bioinform Res Appl 7(3), 273286.CrossRefGoogle Scholar
Karperien, A. (1999–2007). FracLac for ImageJ, version 2.5. Available at http://rsb.info.nih.gov/ij//fraclac/FLHelp/Introduction.htm. Accessed December 14, 2013.Google Scholar
Liu, C., Zhang, H., Pan, Y., Huang, F. & Xia, S. (2012). Towards MIB-1 and p53 detection in glioma magnetic resonance image: a novel computational image analysis method. Phys Med Biol 57(24), 83938404.CrossRefGoogle ScholarPubMed
Losa, G.A. & Castelli, C. (2005). Nuclear patterns of human breast cancer cells during apoptosis: Characterisation by fractal dimension and co-occurrence matrix statistics. Cell Tissue Res 322(2), 257267.CrossRefGoogle ScholarPubMed
Metze, K. (2010). Fractal dimension of chromatin and cancer prognosis. Epigenomics 2(5), 601604.CrossRefGoogle ScholarPubMed
Metze, K. (2013). Fractal dimension of chromatin: potential molecular diagnostic applications for cancer prognosis. Expert Rev Mol Diagn 13(7), 719735.CrossRefGoogle ScholarPubMed
Metzler-Baddeley, C., Jones, D.K., Steventon, J., Westacott, L., Aggleton, J.P. & O'Sullivan, M.J. (2012). Cingulum microstructure predicts cognitive control in older age and mild cognitive impairment. J Neurosci 32(49), 1761217619.CrossRefGoogle ScholarPubMed
Milosevic, N.T. & Ristanovic, D. (2006). Fractality of dendritic arborization of spinal cord neurons. Neurosci Lett 396(3), 172176.CrossRefGoogle ScholarPubMed
Milosevic, N.T., Ristanovic, D., Gudovic, R., Rajkovic, K. & Maric, D. (2007). Application of fractal analysis to neuronal dendritic arborisation patterns of the monkey dentate nucleus. Neurosci Lett 425(1), 2327.CrossRefGoogle ScholarPubMed
Modzelewski, R., Janvresse, E., de la Rue, T. & Vera, P. (2012). Comparison of heterogeneity quantification algorithms for brain SPECT perfusion images. EJNMMI Res 2(1), 40.CrossRefGoogle ScholarPubMed
Pantic, I., Basta-Jovanovic, G., Starcevic, V., Paunovic, J., Suzic, S., Kojic, Z. & Pantic, S. (2013 a). Complexity reduction of chromatin architecture in macula densa cells during mouse postnatal development. Nephrol (Carlton) 18(2), 117124.CrossRefGoogle ScholarPubMed
Pantic, I., Harhaji-Trajkovic, L., Pantovic, A., Milosevic, N.T. & Trajkovic, V. (2012 a). Changes in fractal dimension and lacunarity as early markers of UV-induced apoptosis. J Theor Biol 303, 8792.CrossRefGoogle ScholarPubMed
Pantic, I. & Pantic, S. (2012). Germinal center texture entropy as possible indicator of humoral immune response: Immunophysiology viewpoint. Mol Imaging Biol 14(5), 534540.CrossRefGoogle ScholarPubMed
Pantic, I., Pantic, S. & Basta-Jovanovic, G. (2012 b). Gray level co-occurrence matrix texture analysis of germinal center light zone lymphocyte nuclei: physiology viewpoint with focus on apoptosis. Microsc Microanal 18(3), 470475.CrossRefGoogle ScholarPubMed
Pantic, I., Pantic, S. & Paunovic, J. (2012 c). Aging increases nuclear chromatin entropy of erythroid precursor cells in mice spleen hematopoietic tissue. Microsc Microanal 18(5), 10541059.CrossRefGoogle ScholarPubMed
Pantic, I., Pantic, S., Paunovic, J. & Perovic, M. (2013 b). Nuclear entropy, angular second moment, variance and texture correlation of thymus cortical and medullar lymphocytes: Grey level co-occurrence matrix analysis. An Acad Bras Cienc 85(3), 10631072.CrossRefGoogle ScholarPubMed
Paul, L.K., Brown, W.S., Adolphs, R., Tyszka, J.M., Richards, L.J., Mukherjee, P. & Sherr, E.H. (2007). Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 8(4), 287299.CrossRefGoogle ScholarPubMed
Shamir, L., Wolkow, C.A. & Goldberg, I.G. (2009). Quantitative measurement of aging using image texture entropy. Bioinformatics 25(23), 30603063.CrossRefGoogle ScholarPubMed
Smith, T.G. Jr., Lange, G.D. & Marks, W.B. (1996). Fractal methods and results in cellular morphology–dimensions, lacunarity and multifractals. J Neurosci Methods 69(2), 123136.CrossRefGoogle ScholarPubMed
Tsybrovskyy, O. & Berghold, A. (1999). Primary unit for statistical analysis in morphometry: Patient or cell? Anal Cell Pathol 18(4), 191202.CrossRefGoogle ScholarPubMed
Wang, T.C., Huang, Y.H., Huang, C.S., Chen, J.H., Huang, G.Y., Chang, Y.C. & Chang, R.F. (2014). Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis. Magn Reson Imag 32(3), 197205.CrossRefGoogle ScholarPubMed
Zhang, J., Tong, L., Wang, L. & Li, N. (2008). Texture analysis of multiple sclerosis: A comparative study. Magn Reson Imag 26(8), 11601166.CrossRefGoogle ScholarPubMed
Zhang, L., Dean, D., Liu, J.Z., Sahgal, V., Wang, X. & Yue, G.H. (2007). Quantifying degeneration of white matter in normal aging using fractal dimension. Neurobiol Aging 28(10), 15431555.CrossRefGoogle ScholarPubMed
Supplementary material: File

Pantic Supplementary Material

Data

Download Pantic Supplementary Material(File)
File 57.9 KB