Published online by Cambridge University Press: 11 September 2020
This study aimed to develop and evaluate a blind-deconvolution framework using the alternating direction method of multipliers (ADMMs) incorporated with weighted L1-norm regularization for light microscopy (LM) images. A presimulation study was performed using the Siemens star phantom prior to conducting the actual experiments. Subsequently, the proposed algorithm and a total generalized variation-based (TGV-based) method were applied to cross-sectional images of a mouse molar captured at 40× and 400× on-microscope magnifications and the results compared, and the resulting images were compared. Both simulation and experimental results confirmed that the proposed deblurring algorithm effectively restored the LM images, as evidenced by the quantitative evaluation metrics. In conclusion, this study demonstrated that the proposed deblurring algorithm can efficiently improve the quality of LM images.