Article contents
Application of Atom Probe Microanalysis for Understanding Microstructure Evolution in Nickel Base Superalloy Welds
Published online by Cambridge University Press: 02 July 2020
Extract
The characterization of the microstructure evolution during welding of nickel base superalloys is required for efficient reuse and reclamation of used and failed components. Previous atom probe analysis of electron-beam and laser-beam welds revealed complex alloying elemental partitioning between the γ and γ phases. Rapid cooling conditions in the weld leads to non-equilibrium partitioning and large amplitude Cr and Co levels in the γ phase. These results indicated that there is a strong relationship between weld cooling rate and the precipitation of γ′ precipitates from the γ phase. To understand and develop predictive models, a systematic investigation of the microstructure evolution in CM247DS alloy under controlled thermomechanical conditions are being performed. This paper describes some recent results on the elemental partitioning between γ and γ′ phases obtained with atom probe microanalysis.
- Type
- Phase Transformations
- Information
- Microscopy and Microanalysis , Volume 6 , Issue S2: Proceedings: Microscopy & Microanalysis 2000, Microscopy Society of America 58th Annual Meeting, Microbeam Analysis Society 34th Annual Meeting, Microscopical Society of Canada/Societe de Microscopie de Canada 27th Annual Meeting, Philadelphia, Pennsylvania August 13-17, 2000 , August 2000 , pp. 350 - 351
- Copyright
- Copyright © Microscopy Society of America
References
- 1
- Cited by